Introduction: the aim of the present study was to evaluate the influence of propylene glycol (PG) on the flowability, microhardness, pH and calcium ion release of calcium-enriched mixture (CEM).
Methods And Materials: CEM cement was mixed with different proportions of PG, as follows: group 1,100% CEM liquid (CL); group 2, 100% PG; group 3, 50% PG and group 4, 20% PG. For assessment of flowability, methodology of ADA Specification No. 57 was applied. For measuring microhardness, 80 cylindrical molds (6×4 mm) were filled with CEM cement and divided into 2 subgroups (4, 21 days) and tested using Vickers Test. Data were analyzed using the one-way ANOVA test and Tukey's post hoc and student's test. In order to check pH and calcium release, the mixed cements were placed in cylindrical molds (5×2 mm). After 3, 24, 72 and 168 h, pH determined by a pH meter and the calcium release was measured by an atomic absorption spectrophotometer. Data were analyzed using the repeated measure ANOVA, one way ANOVA test and Tuckey's post hoc test.
Results: The present study showed that the presence of PG did not affect the flowability. With the elapse of time, microhardness was significantly increased in all groups except CL group. Regardless of time, samples with 50% PG showed the lowest pH value which was significantly different from other groups (<0.05) and samples with 100% and 20% PG showed significantly higher calcium ion release compared to other group.
Conclusion: addition of PG did not have any positive or negative effect on the flowability and pH of CEM cement but increased its microhardness in long term. Calcium ion release also increased in the concentration of 20% and 100%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722111 | PMC |
Cureus
December 2024
Endodontics, Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Internal root resorption (IRR) is a rare but complex condition characterized by progressive destruction of the internal dentin walls, typically resulting from chronic pulp inflammation, trauma, or infection. Managing apical IRR, particularly in teeth with extensive apical lesions, presents significant challenges due to the limitations of traditional root canal treatment (RCT) and obturation techniques. This report discusses the nonsurgical management of two contralateral mandibular first molars in a 49-year-old male patient, both exhibiting apical IRR and large endodontic lesions.
View Article and Find Full Text PDFClin Case Rep
January 2025
Iranian Centre for Endodontic Research, Research Institute of Dental Sciences Shahid Beheshti University of Medical Sciences Tehran Iran.
Internal root resorption (IRR) is a complex and often asymptomatic dental condition that can severely compromise tooth vitality and function. This case report presents the successful management of a perforated large IRR lesion in a 49-year-old female using an ultraconservative approach involving partial pulpectomy (PP) using calcium-enriched mixture (CEM) cement. The patient, initially presenting with an asymptomatic resorptive lesion in her left first premolar, underwent ultraconservative PP following diagnosis via conventional radiography and cone beam computed tomography.
View Article and Find Full Text PDFJ Dent (Shiraz)
December 2024
ENT and Head and Neck Research Center and Department, The five senses Health Institute, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Statement Of The Problem: Success of pulpotomy of primary teeth depends on biological and cytotoxic effects of pulp capping agents. Mineral trioxide aggregate (MTA), Biodentine, calcium enriched mixture (CEM) cement, and ferric sulfate (FS) are among the commonly used pulp capping agents (PCAs) for pulpotomy, and their successful application has been previously evaluated.
Purpose: This study aimed to compare the cytotoxicity of PCAs against mesenchymal stem cells isolated from human exfoliated deciduous teeth (SHEDs).
Int J Dent
November 2024
Department of Endodontics, School of Dentistry, Qasvin University of Medical Science, Qasvin, Iran.
Diffusion of hydroxide (OH) and calcium (Ca) ions through dentin may cease external root resorption. Calcium hydroxide (Ca(OH)), mineral trioxide aggregate (MTA), and calcium-enriched mixture (CEM) cement are the choices for this purpose due to their optimal properties. This study sought to analyze the effects of ultrasonic activation (UA) on pH and the release of calcium ions from Ca(OH), MTA, and CEM cement in external root resorption artificial defects.
View Article and Find Full Text PDFCureus
October 2024
Endodontics, Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!