Lysogenisation of Shiga toxin-encoding bacteriophage represses cell motility.

J Gen Appl Microbiol

Department of Life Science, College of Science, Rikkyo University.

Published: March 2018

Bacteriophages are genetic elements that play key roles in the evolution and diversification of bacterial genomes. The Shiga toxin (Stx)-encoding phage plays an important role in the horizontal transfer of the stx gene. However, the influence of the Stx phage integration on the physiological properties and gene expression pattern of the host have not been clearly resolved. In this study, we constructed the Sp5 lysogen through lysogenisation of E. coli K-12 by Sp5, an Stx2 phage in enterohaemorrhagic E. coli (EHEC) O157:H7 Sakai, and examined the effect of the resulting lysogen on cell motility under various growth conditions. Sp5 lysogenisation decreased cell motility and the expression of fliC, which encodes flagellin, under anaerobic conditions at 37°C. Sp5 also lowered the expression of fliA, which encodes the FliA-sigma factor responsible for the transcription of fliC, and flhD, which facilitates the expression of fliA. Sp5 lysogenisation reduced the amount of FlhD and FlhC expressed from the araBAD promoter, suggesting that one or more genes present in Sp5 represses flhDC at the post-transcriptional level. Flagellin is highly antigenic and triggers an immune response in the host. Thus, Sp5 might enhance its viability by repressing the expression of the flagellar regulon to circumvent the immune response of host cells.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.2017.05.001DOI Listing

Publication Analysis

Top Keywords

cell motility
12
sp5 lysogenisation
8
expression flia
8
immune response
8
response host
8
sp5
7
expression
5
lysogenisation
4
lysogenisation shiga
4
shiga toxin-encoding
4

Similar Publications

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Background: Grid cells are spatially modulated cells in the entorhinal cortex (EC) that fire in a hexagonally patterned grid which tiles the environment. These cells are assumed important in human spatial navigation. The EC is vulnerable to neurodegenerative processes in both normal aging and Alzheimer's disease and decline in grid cell function may be a key factor in understanding age-related navigational decline.

View Article and Find Full Text PDF

Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells.

J Neurooncol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Purpose: This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms.

Methods: IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!