The study of the airway microbiome in children is an area of emerging research, especially in relation to the role microbial diversity may play in acute and chronic inflammation. Three such pediatric airway diseases include cystic fibrosis, asthma, and chronic lung disease of prematurity. In cystic fibrosis, the presence of Pseudomonas spp. is associated with decreased microbial diversity. Decreasing microbial diversity is also associated with poor lung function. In asthma, early viral infections appear to drive changes in bacterial diversity which may be associated with asthma risk. Premature infants with Ureaplasma spp. are at higher risk for chronic lung disease due to inflammation. Microbiome changes due to prematurity also appear to affect the inflammatory response to viral infections post-natally. Importantly, microbial diversity can be measured using metataxonomic (e.g., 16S rRNA sequencing) and metagenomic (e.g., shotgun sequencing) approaches. A metagenomics approach may be preferable as it can provide further granularity of the sample composition, identifying the bacterial species or strain, information on additional microbial components, including fungal and viral components, information about functional genomics of the microbiome, and information about antimicrobial resistance mutations. Future studies of pediatric airway diseases incorporating these techniques may provide evidence for new treatment approaches for these vulnerable patient populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992000 | PMC |
http://dx.doi.org/10.1016/j.meegid.2017.12.006 | DOI Listing |
J Med Microbiol
January 2025
Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK.
Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.
View Article and Find Full Text PDFmSphere
January 2025
Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.
Lori Huberman works in the field of fungal genetics, with an emphasis on investigating the genetic mechanisms fungi use to sense and respond to the nutrients and toxins in their environment. In this mSphere of Influence article, she reflects on how "Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons" by K. M.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!