Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORβ orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm. Genetic manipulations that abrogate inhibitory RORβ IN function result in an ataxic gait characterized by exaggerated flexion movements and marked alterations to the step cycle. Inactivation of RORβ in inhibitory neurons leads to reduced presynaptic inhibition and changes to sensory-evoked reflexes, arguing that the RORβ inhibitory INs function to suppress the sensory transmission pathways that activate flexor motor reflexes and interfere with the ongoing locomotor program. VIDEO ABSTRACT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828033PMC
http://dx.doi.org/10.1016/j.neuron.2017.11.011DOI Listing

Publication Analysis

Top Keywords

sensory feedback
12
gate sensory
8
sensory transmission
8
rorβ inhibitory
8
rorβ
5
sensory
5
rorβ spinal
4
spinal interneurons
4
interneurons gate
4
transmission locomotion
4

Similar Publications

This study develops biomimetic strategies for slip prevention in prosthetic hand grasps. The biomimetic system is driven by a novel slip sensor, followed by slip perception and preventive control. Here, we show that biologically inspired sensorimotor pathways can be restored between the prosthetic hand and users.

View Article and Find Full Text PDF

Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles.

Biomimetics (Basel)

November 2024

REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium.

Rehabilitation science has evolved significantly with the integration of technology-supported interventions, offering objective assessments, personalized programs, and real-time feedback for patients. Despite these advances, challenges remain in fully addressing the complexities of human recovery through the rehabilitation process. Over the last few years, there has been a growing interest in the application of biomimetics to inspire technological innovation.

View Article and Find Full Text PDF

Virtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders.

View Article and Find Full Text PDF

Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.

Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.

View Article and Find Full Text PDF

Central mechanisms of muscle tone regulation: implications for pain and performance.

Front Neurosci

December 2024

Department of Psychology and Communication, University of Idaho, Moscow, ID, United States.

Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!