Nucleosome Occupancy and Methylome Sequencing (NOMe-seq).

Methods Mol Biol

Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Published: July 2018

Various methodologies are available to interrogate specific components of epigenetic mechanisms such as DNA methylation or nucleosome occupancy at both the locus-specific and the genome-wide level. It has become increasingly clear, however, that comprehension of the functional interactions between epigenetic mechanisms is critical for understanding how cellular transcription programs are regulated or deregulated during normal and disease development. The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) assay allows us to directly measure the relationship between DNA methylation and nucleosome occupancy by taking advantage of the methyltransferase M.CviPI, which methylates unprotected GpC dinucleotides to create a footprint of chromatin accessibility. This assay generates dual nucleosome occupancy and DNA methylation information at a single-DNA molecule resolution using as little as 200,000 cells and in as short as 15 min reaction time. DNA methylation levels and nucleosome occupancy status of genomic regions of interest can be subsequently interrogated by cloning PCR-amplified bisulfite DNA and sequencing individual clones. Alternatively, NOMe-seq can be combined with next-generation sequencing in order to generate an integrated global map of DNA methylation and nucleosome occupancy, which allows for comprehensive examination as to how these epigenetic components correlate with each other.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7481-8_14DOI Listing

Publication Analysis

Top Keywords

nucleosome occupancy
28
dna methylation
20
methylation nucleosome
12
occupancy methylome
8
methylome sequencing
8
sequencing nome-seq
8
epigenetic mechanisms
8
nucleosome
7
dna
6
occupancy
6

Similar Publications

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

Thermodynamics of nucleosome breathing and positioning.

J Chem Phys

January 2025

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.

View Article and Find Full Text PDF

Revealing long-range heterogeneous organization of nucleoproteins with N-methyladenine footprinting.

bioRxiv

December 2024

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

A major challenge in epigenetics is uncovering the dynamic distribution of nucleosomes and other DNA-binding proteins, which plays a crucial role in regulating cellular functions. Established approaches such as ATAC-seq, ChIP-seq, and CUT&RUN provide valuable insights but are limited by the ensemble nature of their data, masking the cellular and molecular heterogeneity that is often functionally significant. Recently, long-read sequencing technologies, particularly Single Molecule, Real-Time (SMRT/PacBio) sequencing, have introduced transformative capabilities, such as N-methyladenine (6mA) footprinting.

View Article and Find Full Text PDF

Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution.

View Article and Find Full Text PDF

(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!