Background/aims: Human leukocyte antigen-G (HLA-G) plays an important role in inhibiting natural killer (NK) cell function and promoting immune escape. However, the specific mechanism of HLA-G on NK in gastric cancer (GC) remains not well understood. This study investigated the expression of HLA-G in GC and the role of HLA-G-effected NK cells in GC progression.

Methods: HLA-G expression in GC tissues obtained from 49 patients with GC was analyzed by immunohistochemistry and western blot. The number of tumor-infiltrating NK cells and the expression of their surface receptors were analyzed by immunohistochemistry and flow cytometry, respectively. The effect of HLA-G on NK cell proliferation was examined by Cell Counting Kit-8 (CCK8) assay. LDH release assay was used to evaluate the effect of HLA-G on the cytotoxic activity of NK cells, and the levels of IFN-γ and TNF-α in the co-cultured supernatant were detected by ELISA. Mice bearing a xenograft tumor model were used to examine the effect of HLA-G on the anti-tumor effect of NK cells.

Results: HLA-G positive expression was detected in most of the GC tissues, and was correlated with the adverse prognosis of the disease. The expression of HLA-G was negatively associated with the number of tumor-infiltrating NK cells. Furthermore, GC cell lines with overexpressed HLA-G revealed their ability to inhibit the cell proliferation and cytotoxic activity of NK-92MI cells, and reduce the secretion of IFN-γ and TNF-α through immunoglobulin-like transcript 2 (ILT2). Finally, this in vivo experiment was able to prove that HLA-G can inhibit the anti-tumor effect of NK cells through ILT2.

Conclusion: The expression of HLA-G was strongly correlated with the adverse prognosis of GC. The reason may be that it inhibits the proliferation and cytotoxic activity of infiltrating NK cells through ILT2.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000485819DOI Listing

Publication Analysis

Top Keywords

hla-g
12
expression hla-g
12
cytotoxic activity
12
human leukocyte
8
leukocyte antigen-g
8
natural killer
8
cells
8
immunoglobulin-like transcript
8
gastric cancer
8
analyzed immunohistochemistry
8

Similar Publications

Cancer and Secretomes: HLA-G and Cancer Puzzle.

Adv Exp Med Biol

January 2025

Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease.

View Article and Find Full Text PDF

HLA-G Polymorphisms of The 3'-UTR Region Are Involved in Susceptibility to Non-Infectious Uveitis.

Ocul Immunol Inflamm

January 2025

Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.

Purpose: HLA-G is a non-classical HLA class I gene encoding a molecule endowed with immunomodulatory properties, playing important immunosuppressive and tolerogenic roles in immuno-privileged organs. Fluctuations in its expression levels have been correlated with the predisposition to autoinflammatory disorders, notably uveitis, characterized by inflammation of the uvea. In the present work, DNA was obtained from saliva samples of 147 Spanish patients with uveitis, with subsequent analysis focusing on the distribution of polymorphisms within the 3'UTR region of the gene (a region known to modulate the expression of the HLA-G molecule).

View Article and Find Full Text PDF

Enhanced effect of the immunosuppressive soluble HLA-G2 homodimer by site-specific PEGylation.

Sci Rep

January 2025

Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.

Human leukocyte antigen (HLA)-G is a nonclassical HLA class I molecule that has an immunosuppressive effect mediated by binding to immune inhibitory leukocyte immunoglobulin-like receptors (LILR) B1 and LILRB2. A conventional HLA-G isoform, HLA-G1, forms a heterotrimeric complex composed of a heavy chain (α1-α3 domains), β2-microglobulin (β2m) and a cognate peptide. One of the other isoforms, HLA-G2, lacks a α2 domain or β2m to form a nondisulfide-linked homodimer, and its ectodomain specifically binds to LILRB2 expressed in human monocytes, macrophages, and dendritic cells.

View Article and Find Full Text PDF

Human leukocyte antigens (HLAs) are essential regulators of immune responses against cancer, with classical HLAs well-documented for their role in tumor recognition and immune surveillance. In recent years, non-classical HLAs-including HLA-E, HLA-F, HLA-G, and HLA-H-have emerged as critical players in the immune landscape of cancer due to their diverse and less conventional functions in immune modulation. These molecules exhibit unique mechanisms that enable tumors to escape immune detection, promote tumor progression, and contribute to therapeutic resistance.

View Article and Find Full Text PDF

Chorionic trophoblast cells demonstrate functionally different phenotypes from placental trophoblasts.

Biol Reprod

January 2025

Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, United States of America.

Chorionic trophoblast cells (CTCs) are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating CTCs dealt with two separate questions: (1) The necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (2) The functional differences between CTCs and other placental trophoblast lineages of cells (placental cytotrophoblast cells [PTC], and extravillous trophoblast [EVT]). CTCs were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!