A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The hypoxia-tolerant vertebrate brain: Arresting synaptic activity. | LitMetric

The hypoxia-tolerant vertebrate brain: Arresting synaptic activity.

Comp Biochem Physiol B Biochem Mol Biol

Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa, Brain and Mind Research Institute, Canada.

Published: October 2018

The ion channel arrest hypothesis has been the foundation of three decades of research into the underlying mechanisms of hypoxia/anoxia tolerance in several key species, including: painted turtles, goldfish, crucian carp, naked mole rats, and arctic and ground squirrels. The hypothesis originally stated that hypoxia/anoxia tolerant species ought to have fewer ion channels per area membrane and/or mechanisms to regulate the conductance of ion channels. Today we can add to this and include mechanisms to remove channels from membranes and the expression of low conductance isoforms. Furthermore, possible oxygen sensing mechanisms in brain include a link to mitochondrial function, changes in the concentration of intracellular Ca and reactive oxygen species, and activation of protein kinase C and a phosphatase. Importantly ion channel arrest leads to a decrease in metabolic rate that is fundamental to survival without oxygen and in brain is reflected in decreased action potential frequency or spike arrest. This results not only from a decrease in excitatory glutamatergic receptor currents but also by an increase in inhibitory GABAergic receptor currents. The surprising finding that ionic conductance through some ion channels increases is novel and contrary to the ion channel arrest hypothesis. The major insight that this offers is that key regulatory events are occurring at the level of the synapse and we therefore propose the "synaptic arrest hypothesis".

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2017.11.015DOI Listing

Publication Analysis

Top Keywords

ion channel
12
channel arrest
12
ion channels
12
arrest hypothesis
8
conductance ion
8
receptor currents
8
ion
6
arrest
5
hypoxia-tolerant vertebrate
4
vertebrate brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!