Increasing evidence has implicated astrocyte pathology in the etiopathology of major depressive disorder (MDD). In particular, dysfunction of gap junctions in astrocytes is a potential target for MDD treatment. However, the mechanism underlying stress-induced dysfunction of gap junctions is still unknown. We therefore studied the mechanism of stress-induced dysfunction of gap junctions in prefrontal cortical and hippocampal astrocytes. Corticosterone (CORT) was used to induce stress conditions; CORT damaged the function of gap junctions, which resulted from less distribution of connexin43 (Cx43) on membranes and the enhanced phosphorylation of Cx43 at S368. Moreover, CORT downregulated the biosynthesis of Cx43 but increased the degradation of Cx43. Interestingly, both autophagy and the proteasome system were involved in the degradation of Cx43 in prefrontal cortical astrocytes, but only the proteasome system was involved in the degradation of Cx43 in hippocampal astrocytes. CORT significantly induced the formation of annular gap junction vesicles in prefrontal cortical astrocytes; however, Cx43 mainly presented as small dots in the hippocampal astrocytes. Furthermore, CORT increased N-Cadherin expression and the interactions of Cx43 with ZO-1/drebrin in prefrontal cortical astrocytes, but these interactions were oppositely modulated in hippocampal astrocytes. In conclusion, this study clarified the alternations of the Cx43 life cycle in the prefrontal cortical and hippocampal astrocytes exposed to CORT, which may contribute to our understanding of the mechanisms underlying stress-induced dysfunction of gap junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2017.12.003 | DOI Listing |
PLoS One
December 2024
Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Comus officinalis Sieb. et Zucc has significant neuroprotective activity and has been widely studied for its potential to improve cognitive function. Our team's previous research has found that loganin isolated from Comus officinalis has an antidepressant effect.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!