Pearl millet is a crop of the semi-arid tropics having high degree of genetic diversity and variable tolerance to drought stress. To investigate drought tolerance mechanism that possibly accounts for differences in drought tolerance, four recombinant inbred lines from a high resolution cross (HRC) were selected for variability in their transpiration rate (Tr) response to vapour pressure deficit (VPD) conditions. The differential Tr response of the genotypes to increased VPD conditions was used to classify the genotypes as sensitive or insensitive to high VPD. Aquaporin (AQP) genes PgPIP1;1, PgPIP1;2, PgPIP2;1, PgPIP2;3, PgPIP2;6, PgTIP1;1 and PgTIP2;2 were cloned. Phylogenetic analysis revealed that the cloned PgAQPs were evolutionarily closer to maize AQPs than to rice. PgAQP genes, including PgPIP1;1 and PgPIP2;6 in root tissue showed a significant expression pattern with higher expression in VPD-insensitive genotypes than VPD-sensitive genotypes under low VPD conditions (1.2kPa) i.e when there is no high evaporative demand from the atmosphere. PgAQP genes (PgPIP2;1 in leaf and root tissues; PgPIP1;2 and PgTIP2;2 in leaf and PgPIP2;6 in root) followed a diurnal rhythm in leaves and roots that have either higher or lower expression levels at different time intervals. Under high VPD conditions (4.21kPa), PgPIP2;3 showed higher transcript abundance in VPD-insensitive genotypes, and PgPIP2;1 in VPD-sensitive genotypes, while rest of the PgAQPs showed differential expression. Our current hypothesis is that these differences in the expression of AQP genes under different VPDs suggests a role of the AQPs in tuning the water transport pathways with variation between genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2017.10.005DOI Listing

Publication Analysis

Top Keywords

vpd conditions
16
pearl millet
8
genotypes
8
vapour pressure
8
drought tolerance
8
high vpd
8
aqp genes
8
pgaqp genes
8
pgpip26 root
8
vpd-insensitive genotypes
8

Similar Publications

Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ET) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022.

View Article and Find Full Text PDF

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) encompasses a group of conditions which ultimately lead to elevated pulmonary arterial pressure. PH is classified into five subgroups, of which Group 1 pulmonary arterial hypertension (PAH), is the most extensively studied. Numerous causal genes have been identified in PAH, most notably germline mutations in bone morphogenetic protein receptor type 2 () and the wider BMP pathway.

View Article and Find Full Text PDF

Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies.

View Article and Find Full Text PDF

Identifying climatic drivers of forage quantity and quality in Mediterranean rangelands using remote sensing.

Sci Total Environ

December 2024

School of Plant Sciences & Food Security, Faculty of Life Sciences, Tel Aviv University, Israel. Electronic address:

Rangelands are dynamic ecosystems shaped by fluctuations in precipitation, temperature, and grazing intensity. Accurate assessment of forage availability is critical for optimizing land use, preventing overgrazing, and mitigating degradation, especially under future climate change scenarios. This study employed a multi-scale approach to monitor pasture using Sentinel-2 satellite imagery, calibrated with ground truth measurements, and enhanced with drone-derived vegetation cover estimates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!