Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.11.101DOI Listing

Publication Analysis

Top Keywords

de-icing salt
16
salt contamination
12
soil cells
12
salinity alkalinity
12
soil
9
tree performance
8
structural soil
8
northern climates
8
impact contamination
8
structural cells
8

Similar Publications

The characterization of tunnel wash water (TWW) from 12 Norwegian tunnels showed very high concentrations of total suspended solids (TSS), metals, and polycyclic aromatic hydrocarbons (PAHs). Iron (Fe), aluminum (Al), and manganese (Mn) were mainly particle-associated. They are efficiently removed by sedimentation, while the dissolved concentrations of toxic metals like Cu, Zn, and As did not change.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

The detection of chloride in reinforced concrete, crucial for maintenance against damage from de-icing salt or seawater, is advanced by Laser-Induced Breakdown Spectroscopy (LIBS). This study demonstrates that integrating microwaves with LIBS enhances cement analysis, improving the signal-to-noise ratio by up to four times and extending the detection limit for chlorine to 0.17 ± 0.

View Article and Find Full Text PDF

With the chemical formula CaCl, calcium chloride is a salt as well as an inorganic material. At room temperature, it has the consistency of a white, crystalline solid and is very water-soluble. It can be created by neutralizing calcium hydroxide with hydrochloric acid.

View Article and Find Full Text PDF

Coping with stress: Salt type, concentration, and exposure history limit life history tradeoffs in response to road salt salinization.

Sci Total Environ

November 2024

Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA. Electronic address:

Substantial increases in the salinity of freshwater ecosystems has occurred around the globe from causes such as climate change, industrial operations, and the application of road deicing salts. We know very little about how plastic responses in life history traits or rapid evolution of new traits among freshwater organisms could promote stability in ecological communities affected by salinization. We performed a cohort life history analysis from birth to death with 180 individuals of a ubiquitous freshwater zooplankter to understand how life history traits are affected by exposure to two common salt types causing salinization-sodium chloride (NaCl) and calcium chloride (CaCl)-across two environmentally relevant concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!