Inflammation and oxidative stress are common in many chronic diseases. Targeting signaling pathways that contribute to these conditions may have therapeutic potential. The transcription factor Nrf2 is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. Nrf2 is widespread in the CNS and is recognized as an important regulator of brain inflammation. The natural product curcumin exhibits numerous biological activities including ability to induce the expression of Nrf2-dependent phase II and anti-oxidant enzymes. Curcumin has been examined in a number of clinical studies with limited success, mainly owing to limited bioavailability and rapid metabolism. Enone analogues of curcumin were examined with an Nrf2 reporter assay to identify Nrf2 activators. Analogues were separated into groups with a 7-carbon dienone spacer, as found in curcumin; a 5-carbon enone spacer with and without a ring; and a 3-carbon enone spacer. Activators of Nrf2 were found in all three groups, many of which were more active than curcumin. Dose-response studies demonstrated that a range of substituents on the aromatic rings of these enones influenced not only the sensitivity to activation, reflected in EC values, but also the extent of activation, which suggests that multiple mechanisms are involved in the activation of Nrf2 by these analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.11.048 | DOI Listing |
Eur J Med Chem
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. Electronic address:
Interferon regulatory factor 4 (IRF4) is specifically overexpressed in multiple myeloma (MM) and mediates MM progression and survival, making it an emerging target for MM treatment. However, no chemical entity with a defined structure capable of directly binding to and inhibiting IRF4 has been reported. We screened our small library of steroid analogs and identified bisnoralcohol (BA) derivative 18 as a novel hit compound capable of inhibiting IRF4, with an IC of 13.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.
Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (- and -) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (, and -), which showed some analogy to miscellaneous anti-coronavirus agents.
View Article and Find Full Text PDFJ Org Chem
December 2024
Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, 84084 Fisciano, SA, Italy.
Herein we report two processes facilitated by diisopropylethylamine (DIPEA) for the synthesis of novel bridged polycyclic molecule analogues to natural products. The use of 4-bromoisochroman-3-one initiated an autoxidation reaction, followed by a Diels-Alder cycloaddition in the presence of electron-deficient dienophiles. Mechanistic studies revealed isochromane-3,4-dione as a key intermediate, which undergoes in situ dienolization/dearomatization followed by a [4 + 2] cycloaddition.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
Chem Sci
December 2024
LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
Phosphaenones, like their carbon analogue enones (C[double bond, length as m-dash]C-C[double bond, length as m-dash]O), are promising building blocks for synthetic chemistry and materials science. However, in contrast to the α- and β-phosphaenones, structurally and spectroscopically well-defined diphosphaenones (DPEs) are rare. In this study, we disclose the isolation and spectroscopic characterization of N-heterocyclic vinyl (NHV) substituted acyclic DPEs 3a,b [NHV-P[double bond, length as m-dash]P-C(O)-NHV].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!