Hypothalamic magnocellular neurons secrete vasopressin into the systemic circulation to maintain blood pressure by increasing renal water reabsorption and by vasoconstriction. When blood pressure rises, baroreflex activation normally inhibits vasopressin neurons via activation of GABAergic inputs. However, plasma vasopressin levels are paradoxically elevated in several models of hypertension and in some patients with essential hypertension, despite increased blood pressure. We have previously shown that vasopressin neuron activity is increased early in the development of moderate angiotensin II-dependent hypertension via blunted baroreflex inhibition of vasopressin neurons. Here, we show that antagonism of vasopressin-induced vasoconstriction slows the development of hypertension and that local administration of a GABA receptor antagonist inhibits vasopressin neurons during, but not before, the onset of hypertension. Taken together, our data suggest that vasopressin exacerbates the increase in blood pressure evident early in the development hypertension and that blunted baroreflex inhibition of vasopressin neurons is underpinned by an excitatory shift in their response to endogenous GABA signalling. This article is protected by copyright. All rights reserved.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jne.12564DOI Listing

Publication Analysis

Top Keywords

vasopressin neurons
20
blood pressure
16
vasopressin
9
angiotensin ii-dependent
8
ii-dependent hypertension
8
inhibits vasopressin
8
early development
8
hypertension blunted
8
blunted baroreflex
8
baroreflex inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!