Purpose: To develop and validate a new prospective respiratory motion compensation algorithm for free-breathing whole-heart 3D cine steady-state free precession (SSFP) imaging.
Methods: In a 3D cine SSFP sequence, 4 excitations per cardiac cycle are re-purposed to prospectively track heart position. Specifically, their 1D image is reconstructed and routed into the scanner's standard diaphragmatic navigator processing system. If all 4 signals are in end-expiration, cine image data from the entire cardiac cycle is accepted for image reconstruction. Prospective validation was carried out in patients (N = 17) by comparing in each a conventional breath-hold 2D cine ventricular short-axis stack and a free-breathing whole-heart 3D cine data set.
Results: All 3D cine SSFP acquisitions were successful and the mean scan time was 5.9 ± 2.7 min. Left and right ventricular end-diastolic, end-systolic, and stroke volumes by 3D cine SSFP were all larger than those from 2D cine SSFP. This bias was < 6% except for right ventricular end-systolic volume that was 12%. The 3D cine images had a lower ventricular blood-to-myocardium contrast ratio, contrast-to-noise ratio, mass, and subjective quality score.
Conclusion: The novel prospective respiratory motion compensation method for 3D cine SSFP imaging was robust and efficient and yielded slightly larger ventricular volumes and lower mass compared to breath-hold 2D cine imaging. Magn Reson Med 80:181-189, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876089 | PMC |
http://dx.doi.org/10.1002/mrm.27021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!