Synthesis of Biocompatible Titanate Nanofibers for Effective Delivery of Neuroprotective Agents.

Methods Mol Biol

International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.

Published: July 2018

Nanoscience provides us with new opportunities to develop nanotechnologies for treating, in particular, central nervous system disorders such as Alzheimer disease and multiple sclerosis. From a methodological point of view, it is challenging to deliver drugs effectively across the blood-brain barrier and blood-cerebrospinal fluid barrier. Our 10-year data and reports from both in vivo and in vitro studies, however, have consistently proved that therapeutic drugs of different types can be generally loaded in/on the nanocarriers for targeted and programmable deliveries to the central nervous system with a high degree of efficacy. This chapter presents a protocol for the synthesis of biocompatible titanate nanofibers as low-cost drug delivery cargos. In addition, a procedure for loading the neuroprotective agent Cerebrolysin onto the nanofibers is briefly described. Finally, experimental observations on the use of nanodrug delivery for superior neuroprotective effects of Cerebrolysin in traumatic brain injury are given as a proof of concept as compared to normal drug alone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7571-6_35DOI Listing

Publication Analysis

Top Keywords

synthesis biocompatible
8
biocompatible titanate
8
titanate nanofibers
8
central nervous
8
nervous system
8
nanofibers effective
4
effective delivery
4
delivery neuroprotective
4
neuroprotective agents
4
agents nanoscience
4

Similar Publications

Chinese herbal medicine-inspired construction of multi-component hydrogels with antibacterial and wound-healing-promoting functions.

J Mater Chem B

January 2025

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

Chinese herbal medicine (CHM) has offered a great treasure and source of inspiration for developing innovative medicinal materials and therapy. In this work, inspired by the macroscopic compatibility of and in CHM, the puerarin (PUE) and CaSO (Ca) as the main constituents, respectively, from the two herbs are co-assembled into two-component molecular hydrogels. Such two-component gels exhibited enhanced mechanical properties compared with the single-component PUE gel due to the introduction of crosslinking hydrogen bonds between PUE and Ca.

View Article and Find Full Text PDF

The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, , photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd) and dysprosium (Dy) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!