Primary Motor Neuron Culture to Promote Cellular Viability and Myelination.

Methods Mol Biol

Multiscale Mechanical Design Laboratory, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.

Published: July 2018

A culture system that can recapitulate myelination in vitro will not only help us to better understand the mechanism of myelination and demyelination but also identify possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC co-culture system, MNs survive over 3 weeks and extend long axons. Both viability and axon growth of MNs in the co-culture are markedly enhanced as compared to those of MN monocultures. Co-labeling of myelin basic proteins and neuronal cell microtubules reveals that SCs form myelin sheaths by wrapping around the axons of MNs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7571-6_32DOI Listing

Publication Analysis

Top Keywords

myelination culture
8
culture system
8
motor neurons
8
axons mns
8
mns
5
primary motor
4
motor neuron
4
culture
4
neuron culture
4
culture promote
4

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.

View Article and Find Full Text PDF

Oligodendroglial cells generate myelin sheaths in the vertebrate central nervous system to render rapid saltatory conduction possible and express the highly related Sox8, Sox9 and Sox10 transcription factors. While Sox9 and Sox10 fulfill crucial regulatory roles, Sox8 has only a limited impact on oligodendroglial development and myelination. By replacing Sox10 with Sox8 or Sox9 in the oligodendroglial Oln93 cell line, and comparing the expression profiles, we show here that Sox8 regulates the same processes as Sox10 and Sox9, but exhibits a substantially lower transcriptional activity under standard culture conditions.

View Article and Find Full Text PDF

MCL-1 regulates cellular transitions during oligodendrocyte development.

bioRxiv

December 2024

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.

Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune disease damaging the central nervous system. Diminished inflammatory disease activity (DA) as people with MS (pwMS) age motivated randomized clinical trials assessing disease-modifying therapy (DMT) discontinuation in older pwMS given the concern for risks outweighing benefits. This study aims to examine whether peripheral production of Myelin Basic Protein (MBP)-driven cytokine responses mediate the aging-associated decline in MS inflammatory DA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!