We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-017-0674-4DOI Listing

Publication Analysis

Top Keywords

stimuli homogeneous
8
homogeneous heterogeneous
8
sources variability
8
homogeneous population
8
noise
8
heterogeneous population
8
heterogeneous system
8
neuronal populations
8
heterogeneous
5
coding time-dependent
4

Similar Publications

Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

Entropy (Basel)

December 2024

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition.

View Article and Find Full Text PDF

Here, hybrid stimuli-responsive (exhibiting pyroelectricity and piezoelectricity) porous cryogels are engineered by embedding tourmaline nanoparticles (TNs) in a cellulose nanofiber (CNF) skeleton to generate high-performance CNF-TN-based airborne particulate matter (PM) filters. First, single-layer hybrid cryogels with varying TN contents (0-5% w v) are assembled, and the design principles for multilayered filters are established based on a novel sequential pre-freezing and freeze-drying technique. As observed, the embedded TNs transformed the CNF network into a more homogeneous, isotropic, and firm structure, thus improving the structural integrity and thermal stability of the assembled cryogels while maintaining their ultrahigh porosity and low density.

View Article and Find Full Text PDF

Humans share with many animal species the ability to perceive and approximately represent the number of objects in visual scenes. This ability improves throughout childhood, suggesting that learning and development play a key role in shaping our number sense. This hypothesis is further supported by computational investigations based on deep learning, which have shown that numerosity perception can spontaneously emerge in neural networks that learn the statistical structure of images with a varying number of items.

View Article and Find Full Text PDF

Various spike patterns from sensory/motor neurons provide information about the dynamic sensory stimuli. Based on the information theory, neuroscientists have revealed the influence of spike variables on information transmission. Among diverse spike variables, inter-trial heterogeneity, known as jitter, has been observed in physiological neuron activity and responses to artificial stimuli, and it is recognized to contribute to information transmission.

View Article and Find Full Text PDF
Article Synopsis
  • Underwater ecosystems are increasingly affected by anthropogenic noise, which leads to significant uncertainty about its impact on aquatic communities.
  • A meta-analysis of 835 data points from 46 studies revealed that anthropogenic and synthetic sounds negatively impact aquatic invertebrates' behavior and physiology, while environmental sounds have a slightly positive effect.
  • The research highlights the need to include aquatic invertebrates in studies on noise pollution and its effects, as their sensitivity to sound changes can have significant repercussions for individual species and aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!