A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thrombomodulin favors leukocyte microvesicle fibrinolytic activity, reduces NETosis and prevents septic shock-induced coagulopathy in rats. | LitMetric

Background: Septic shock-induced disseminated intravascular coagulation is responsible for increased occurrence of multiple organ dysfunction and mortality. Immunothrombosis-induced coagulopathy may contribute to hypercoagulability. We aimed at determining whether recombinant human thrombomodulin (rhTM) could control exaggerated immunothrombosis by studying procoagulant responses, fibrinolysis activity borne by microvesicles (MVs) and NETosis in septic shock.

Methods: In a septic shock model after a cecal ligation and puncture-induced peritonitis (H0), rats were treated with rhTM or a placebo at H18, resuscitated and monitored during 4 h. At H22, blood was sampled to perform coagulation tests, to characterize MVs and to detect neutrophils extracellular traps (NETs). Lungs were stained with hematoxylin-eosin for inflammatory injury assessment.

Results: Coagulopathy was attenuated in rhTM-treated septic rats compared to placebo-treated rats, as attested by a significant decrease in procoagulant annexin A5-MVs and plasma procoagulant activity of phospholipids and by a significant increase in antithrombin levels (84 ± 8 vs. 64 ± 6%, p < 0.05), platelet count (582 ± 157 vs. 319 ± 91 × 10/L, p < 0.05) and fibrinolysis activity borne by MVs (2.9 ± 0.26 vs. 0.48 ± 0.29 U/mL urokinase, p < 0.05). Lung histological injury score showed significantly less leukocyte infiltration. Decreased procoagulant activity and lung injury were concomitant with decreased leukocyte activation as attested by plasma leukocyte-derived MVs and NETosis reduction after rhTM treatment (neutrophil elastase/DNA: 93 ± 33 vs. 227 ± 48 and citrullinated histones H3/DNA: 96 ± 16 vs. 242 ± 180, mOD for 10 neutrophils/L, p < 0.05).

Conclusion: Thrombomodulin limits procoagulant responses and NETosis and at least partly restores hemostasis control during immunothrombosis. Neutrophils might thus stand as a promising therapeutic target in septic shock-induced coagulopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722785PMC
http://dx.doi.org/10.1186/s13613-017-0340-zDOI Listing

Publication Analysis

Top Keywords

septic shock-induced
8
septic
5
thrombomodulin favors
4
favors leukocyte
4
leukocyte microvesicle
4
microvesicle fibrinolytic
4
fibrinolytic activity
4
activity reduces
4
reduces netosis
4
netosis prevents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!