Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi-LGN-NuMA complex, which targets the force generator dynein-dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800812 | PMC |
http://dx.doi.org/10.1083/jcb.201707050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!