Photochemical internalization enhanced macrophage delivered chemotherapy.

Photodiagnosis Photodyn Ther

Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States.

Published: March 2018

Background: Macrophage (Ma) vectorization of chemotherapeutic drugs has the advantage for cancer therapy in that it can actively target and maintain an elevated concentration of drugs at the tumor site, preventing their spread into healthy tissue. A potential drawback is the inability to deliver a sufficient number of drug-loaded Ma into the tumor, thus limiting the amount of active drug delivered. This study examined the ability of photochemical internalization (PCI) to enhance the efficacy of released drug by Ma transport.

Methods: Tumor spheroids consisting of either F98 rat glioma cells or F98 cells combined with a subpopulation of empty or doxorubicin (DOX)-loaded mouse Ma (RAW264.7) were used as in vitro tumor models. PCI was performed with the photosensitizer AlPcS and laser irradiation at 670 nm.

Results: RAW264.7 Ma pulsed with DOX released the majority of the incorporated DOX within two hours of incubation. PCI significantly increased the toxicity of DOX either as pure drug or derived from monolayers of DOX-loaded Ma. Significant growth inhibition of hybrid spheroids was also observed with PCI even at subpopulations of DOX-loaded Ma as low as 11% of the total initial hybrid spheroid cell number.

Conclusion: Results show that RAW264.7 Ma, pulsed with DOX, could effectively incorporate and release DOX. PCI significantly increased the ability of both free and Ma-released DOX to inhibit the growth of tumor spheroids in vitro. The growth of F98 + DOX loaded Ma hybrid spheroids were synergistically reduced by PCI, compared to either photodynamic therapy or released DOX acting alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873960PMC
http://dx.doi.org/10.1016/j.pdpdt.2017.12.002DOI Listing

Publication Analysis

Top Keywords

photochemical internalization
8
tumor spheroids
8
raw2647 pulsed
8
pulsed dox
8
pci increased
8
hybrid spheroids
8
dox
7
pci
6
tumor
5
internalization enhanced
4

Similar Publications

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)] [1], [Ru(p-ttp)(phen)(PTA)] [2] having a phosphorus-based ligand PTA [p-ttp=p-tolyl terpyridine; bpy=2,2'-bipyridyl; phen=1,10-phenanthroline and PTA=1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1] and [2] neither undergo ligand release nor exhibit room temperature luminescence/O generation.

View Article and Find Full Text PDF

Background/objectives: Although the use of radiation-sensitizing agents has been shown to enhance the effect of radiation on tumor cells, the blood-brain barrier (BBB) impedes these agents from reaching brain tumor sites when provided systemically. Localized methods of sensitizer delivery, utilizing hydrogels, have the potential to bypass the blood-brain barrier. This study examined the ability of photochemical internalization (PCI) of hydrogel-released bleomycin to enhance the growth-inhibiting effects of radiation on multi-cell glioma spheroids in vitro.

View Article and Find Full Text PDF

A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo -/- photoisomerizations. The photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin.

View Article and Find Full Text PDF

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn () or a hooked bdppz () benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution.

View Article and Find Full Text PDF

Polymer-DNA Carriers Co-Deliver Photosensitizer and siRNA for Light-Promoted Gene Transfection and Hypoxia-Relieved Photodynamic Therapy.

Angew Chem Int Ed Engl

July 2024

Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China.

Photochemical internalization is an efficient strategy relying on photodynamic reactions to promote siRNA endosomal escape for the success of RNA-interference gene regulation, which makes gene-photodynamic combined therapy highly synergistic and efficient. However, it is still desired to explore capable carriers to improve the delivery efficiency of the immiscible siRNA and organic photosensitizers simultaneously. Herein, we employ a micellar nanostructure (PSNA) self-assembled from polymer-DNA molecular chimeras to fulfill this task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!