Benefit of using motion compensated reconstructions for reducing inter-observer and intra-observer contouring variation for organs at risk in lung cancer patients.

Radiother Oncol

Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK.

Published: February 2018

Background And Purpose: In lung cancer patients, accuracy in contouring is hampered by image artefacts introduced by respiratory motion. With the widespread introduction of 4DCT there is additional uncertainty caused by the use of different reconstruction techniques which will influence contour definition. This work aims to assess both inter- and intra-observer contour variation on average and motion compensated (mid-position) reconstructions.

Material And Methods: Eight early stage non-small cell lung cancer patients that received 4DCT were selected and these scans were reconstructed as average and motion compensated datasets. 5 observers contoured the organs at risk (trachea, oesophagus, proximal bronchial tree, heart and brachial plexus) for each patient and each reconstruction. Contours were compared against a STAPLE volume with distance to agreement metrics. Intra-observer variation was assessed by redelineation after 4 months.

Results: The inter-observer variation was significantly smaller using the motion compensated datasets for the trachea (p = 0.006) and proximal bronchial tree (p = 0.004). For intra-observer variation, a reduction in contour variation was seen across all organs at risk in using motion compensated reconstructions.

Conclusions: This work shows that there is benefit in using motion compensated reconstructions for reducing both inter-observer and intra-observer contouring variations for organs at risk in lung cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2017.11.021DOI Listing

Publication Analysis

Top Keywords

motion compensated
24
organs risk
16
lung cancer
16
cancer patients
16
benefit motion
8
compensated reconstructions
8
reconstructions reducing
8
reducing inter-observer
8
inter-observer intra-observer
8
intra-observer contouring
8

Similar Publications

In living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.

View Article and Find Full Text PDF

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

Ultraprecision multi-axis CARIC control strategy with application to a nano-accuracy air-bearing motion stage.

ISA Trans

January 2025

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Transformative High-end Manufacturing Equipment and Technology, Tsinghua University, Beijing, 100084, China. Electronic address:

Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components.

View Article and Find Full Text PDF

Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!