Background: Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults.

Methods: In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO) concentrations were measured.

Findings: Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO, PM, PM, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO, ultrafine particles and PM, and an increase in PWV and augmentation index with NO and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles.

Interpretation: Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects.

Funding: British Heart Foundation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803182PMC
http://dx.doi.org/10.1016/S0140-6736(17)32643-0DOI Listing

Publication Analysis

Top Keywords

heart disease
20
ischaemic heart
16
age-matched healthy
12
healthy volunteers
12
respiratory cardiovascular
8
cardiovascular responses
8
responses walking
8
compared walking
8
walking traffic-free
8
traffic-free area
8

Similar Publications

Aims: Atrial septal defect (ASD) and partial abnormal pulmonary venous connection (PAPVC) are noncyanotic congenital heart defects (CHD) that produce a left-to-right shunt. This single-center retrospective study aimed to assess the hemodynamic impact of isolated ASD, isolated PAPVC, and ASD-associated PAPVC using cardiovascular magnetic resonance (CMR).

Methods And Results: From our CMR registry (2002-2024), 110 patients were included: isolated ASD (n=64), isolated PAPVC (n=18), ASD-associated PAPVC (n=28, mostly sinus venosus septal defects).

View Article and Find Full Text PDF

Objective: Diastolic dysfunction (DD) is defined as impaired left ventricular (LV) relaxation, caused by structural or functional heart diseases. We sought to assess the role of cardiac CT angiography (CCTA) as a tool to evaluate LV DD in patients with normal EF using the diastolic expansion index (DEI), as compared to transthoracic echocardiography (TTE) as the gold standard.

Methods: Patients presenting with atypical chest pain with suspected coronary artery disease (CAD) and having a normal LV ejection fraction on TTE underwent CCTA using a dual source CT scanner.

View Article and Find Full Text PDF

Toxoplasma gondii from Gabonese forest, Central Africa: First report of an African wild strain.

PLoS Negl Trop Dis

January 2025

Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.

The protozoan Toxoplasma gondii is a ubiquitous and highly prevalent parasite that can theoretically infect all warm-blooded vertebrates. In humans, toxoplasmosis causes infections in both immunodeficient and immunocompetent patients, congenital toxoplasmosis, and ocular lesions. These manifestations have different degrees of severity.

View Article and Find Full Text PDF

Natural Mutation of PrfA K10N/T151A Enhances Serotype 4h Virulence.

Foodborne Pathog Dis

January 2025

College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China.

PrfA is a key virulence regulator for (Lm) responding to host environment. Here we report that the natural mutation in PrfA enhanced the pathogenicity of hypervirulent serotype 4h . We characterized the phylogenetic tree of PrfA, and found that PrfA prevalently distributed in all serotype 4h isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!