Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas) on a defective solid surface is considered. The vapor is described by the van der Waals equation of state. The dependence of nucleating droplet parameters on droplet size is accounted for within the generalized Gibbs approach. As a surface defect, a conic void is taken. This choice allows us to simplify the analysis and at the same time to follow the main aspects of the influence of the surface roughness on the nucleation process. Similar to condensation on ideal planar surfaces, the contact angle and catalytic factor for heterogeneous nucleation on a rough surface depend on the degree of vapor overcooling. In the case of droplet formation on a hydrophilic surface of a conic void, the nucleation rate considerably increases in comparison with the condensation on a planar interface. In fact, the presence of a defect on the hydrophilic surface leads to a considerable shift of the spinodal towards lower supersaturation in comparison with heterogeneous nucleation on a planar interface. With the decrease in the void cone angle, the heterogeneous spinodal approaches the binodal, and the region of metastability is diminished at the expense of the instability region.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5006631DOI Listing

Publication Analysis

Top Keywords

heterogeneous nucleation
16
nucleation rough
8
conic void
8
hydrophilic surface
8
planar interface
8
surface
6
heterogeneous
5
nucleation
5
rough surfaces
4
surfaces generalized
4

Similar Publications

Nucleation of multicomponent systems is a pervasive phenomenon in nature and is pertinent to a diverse array of scientific and industrial challenges. The nucleation mechanisms of immiscible multicomponent systems remain unclear. Here, gas hydrate is employed as a model system to study the nucleation of multicomponent systems.

View Article and Find Full Text PDF

For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.

View Article and Find Full Text PDF

Formation Dynamics of Thermally Stable 1D/3D Perovskite Interfaces for High-Performance Photovoltaics.

Adv Mater

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Direct understanding of the formation and crystallization of low-dimensional (LD) perovskites with varying dimensionalities employing the same bulky cations can offer insights into LD perovskites and their heterostructures with 3D perovskites. In this study, the secondary amine cation of N-methyl-1-(naphthalen-1-yl)methylammonium (M-NMA) and the formation dynamics of its corresponding LD perovskite are investigated. The intermolecular π-π stacking of M-NMA and their connection with inorganic PbI octahedrons within the product structures control the formation of LD perovskite.

View Article and Find Full Text PDF

Hidden domain boundary dynamics toward crystalline perfection.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

Pore pressure inhibits clustering of induced earthquakes in Western Canada.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.

Induced earthquakes are manifestations of highly heterogeneous distributions of effective stress changes imparted by anthropogenic activities such as hydraulic fracturing and wastewater injection. It is critical to disentangle the mechanisms behind these earthquakes to better assess seismic risk. Here, a clustering methodology is applied to a catalog of 21,536 induced earthquakes detected during a 36-d hydraulic stimulation program in Western Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!