We introduce a robust control method of terahertz (THz) transmission by tuning filling factors of Au nanoparticles (AuNPs) inside nano slot antennas. AuNPs in sub-100 nm diameters were spread over the nano slot antennas, followed by sweeping them into the slots. AuNPs can be efficiently localized and inserted into nano slots where the THz fields are greatly enhanced, by a "squeegee" made of the polydimethylsiloxane (PDMS). The sweeping of the AuNPs results in further dramatic reduction of THz transmission by suppressing the fundamental resonance mode of the nano slot, as compared to a typical random dropping case. It definitely works for an accurate THz transmission control, as well as the removal of unwanted ions that occasionally confuse signal accuracy from the target signals. Our approach provides a complete reinterpretation of sample deposition for further steady demands in developing ultrasensitive terahertz (THz) molecule sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.030591 | DOI Listing |
Small Methods
November 2024
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China.
Upscaling the perovskite solar cell (PSC) while avoiding losses in the power conversion efficiency presents a substantial challenge, especially when transitioning from ≤1 cm cells to ≥10 cm modules. In addition to the fabrication of key functional layers, scalable technologies for surface passivation, considered indispensable for achieving high-performance PSCs, are urgently required. However, studies on this topic remain limited.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Mathematics, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia.
In past years, concentrated solar power (CSP) with an energy backup system has been a unique renewable energy utilization system among intermittent renewable energy systems. It could allow a CSP plant to operate as a base load system in the future. This paper simulates a solar power plant for 1 MWe.
View Article and Find Full Text PDFMicromachines (Basel)
August 2024
Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Interest grows in designing silicon-on-insulator slot waveguides to trap optical fields in subwavelength-scale slots and developing their optofluidic devices. However, it is worth noting that the inherent limitations of the waveguide structures may result in high optical losses and short optical paths, which challenge the device's performance in optofluidics. Incorporating the planar silicon-based slot waveguide concept into a silica-based hollow-core fiber can provide a perfect solution to realize an efficient optofluidic waveguide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!