Electrically tunable metasurfaces have gained special interest as they can realize ultrathin surface-normal modulators in planar geometries. In this paper, we demonstrate a novel metasurface modulator based on electro-optic (EO) polymer that utilizes bimodal resonance inside a metallic subwavelength grating to increase the modulation efficiency. When two metal-insulator-metal (MIM) resonant modes are excited simultaneously inside the grating, they couple strongly to generate a sharp dip in the reflected spectrum. As a result, efficient intensity modulation with 15-dB extinction ratio can be obtained at the resonant wavelength under a small refractive index change of 8.5 × 10, corresponding to modulation voltage of less than 10 V. Due to the low parasitic capacitance of EO polymer and high conductivity of metallic gratings which is also used as the electrodes, the RC bandwidth of the device should easily exceed 100 GHz, potentially applicable to high-speed surface-normal modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.030304DOI Listing

Publication Analysis

Top Keywords

metasurface modulator
8
electro-optic polymer
8
surface-normal modulators
8
active metasurface
4
modulator electro-optic
4
polymer bimodal
4
bimodal plasmonic
4
plasmonic resonance
4
resonance electrically
4
electrically tunable
4

Similar Publications

Organic Metasurfaces with Contrasting Conducting Polymers.

Nano Lett

January 2025

Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.

View Article and Find Full Text PDF

This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.

View Article and Find Full Text PDF

The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.

View Article and Find Full Text PDF

Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.

View Article and Find Full Text PDF

This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!