Anisotropic coherent radiation has been generated from an isotropic medium, in the absence of an external magnetic field, by the spin polarization of an atomic excited state. Lasing on specific hyperfine lines of the 6pP→6sS (D) transition of Cs at 852.1 nm has been realized by photoexciting Cs-rare gas thermal collision pairs with a circularly-polarized (σ) optical field. Subsequent dissociation of the transient Cs-rare gas BΣ12+ diatomic molecule selectively populates the F = 4, 5 hyperfine levels of the Cs 6pP state. Not only does electronic spin polarization of the upper laser level yield circularly-polarized coherent emission, but the effective degeneracy (g) of the 6pP state is altered by the non-statistical hyperfine state population distribution, thereby permitting control of the laser small signal gain with an elliptically-polarized pump optical field. The D laser efficiency and output power correlate directly with the molecular orbital structure of the Cs-rare gas BΣ state in the region of internuclear separation at which the diatomic complex is born.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.029676DOI Listing

Publication Analysis

Top Keywords

spin polarization
12
cs-rare gas
12
excited state
8
electronic spin
8
upper laser
8
laser level
8
small signal
8
signal gain
8
optical field
8
state
6

Similar Publications

Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.

View Article and Find Full Text PDF

Systematic Study of Hard-Wall Confinement-Induced Effects on Atomic Electronic Structure.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A.I. Virtanens Plats 1, University of Helsinki FI-00014, Finland.

We point out that although a litany of studies have been published on atoms in hard-wall confinement, they have either not been systematic, having only looked at select atoms and/or select electron configurations, or they have not used robust numerical methods. To remedy the situation, we perform in this work a methodical study of atoms in hard-wall confinement with the HelFEM program, which employs the finite element method that trivially implements the hard-wall potential, guarantees variational results, and allows for easily finding the numerically exact solution. Our fully numerical calculations are based on nonrelativistic density functional theory and spherically averaged densities.

View Article and Find Full Text PDF

This study investigates the intricate properties of linearly polarized circular Airyprime-Gaussian vortex beams (CApGVBs) in tightly focused optical systems. We explore the relationship between self-focusing and tight focusing of CApGVBs by adjusting the main ring radius. By refining vortex pair parameters, we show that the intensity distribution depends significantly on whether the arrangement is axial or off-axis.

View Article and Find Full Text PDF

We present a dual isotope magneto-optical trap (MOT), simultaneous sub-Doppler laser cooling, and magnetic trapping of a spin-polarized K-K Bose-Fermi mixture realized in a single-chamber setup with an unenriched potassium dispenser as the source of atoms. We are able to magnetically confine more than 2.2 × 10 fermions ( = 9/2 ,  = 9/2) and 1.

View Article and Find Full Text PDF

Ferromagnetic Fe-TiO spin catalysts for enhanced ammonia electrosynthesis.

Nat Commun

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.

Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!