AI Article Synopsis

  • * A study focused on Agrobacterium biovar 1 used phylogenetic methods to analyze how gene transfers shaped their evolutionary history, revealing clusters of co-transferred genes related to specific biochemical pathways.
  • * The findings suggest that instead of random gene transfers, there is selective pressure favoring the transfer of functionally linked genes, which likely helped Agrobacterium adapt to diverse ecological niches, particularly in connection with host plant environments.

Article Abstract

Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739047PMC
http://dx.doi.org/10.1093/gbe/evx255DOI Listing

Publication Analysis

Top Keywords

ecological diversification
8
diversification agrobacterium
8
ecological niches
8
history genomes
8
genes
6
ecological
5
ancestral genome
4
genome estimation
4
estimation reveals
4
reveals history
4

Similar Publications

A thorny tale: The origin and diversification of Cirsium (Compositae).

Mol Phylogenet Evol

January 2025

Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain.

Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored.

View Article and Find Full Text PDF

Exploring the relationship between upwelling intensity and socio-ecological attributes of marine exploitation areas for benthic resources (MEABRs), along the southern Humboldt Current system.

J Environ Manage

January 2025

Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Chile. Electronic address:

The Eastern Boundary Upwelling Systems (EBUS) sustains some of the most productive marine systems on Earth. Within each of these systems, the upwelling process exhibits spatial and temporal variation resulting in marked differences in upwelling intensity and seasonality along extensive coastlines. The study of this variation is well needed, given the magnitude of the services provided by upwelling, and the impending impacts of global warming on EBUS.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how intercontinental movements of certain plant lineages (Hydrangeaceae and Loasaceae) may promote ecological opportunities and species diversity.
  • Researchers reconstructed a phylogeny using molecular data and analyzed speciation rates, finding that while some clades showed increased diversification, it wasn't linked to new continental colonization.
  • The findings suggest that climate change in the Miocene played a more significant role in species diversification rather than dispersal across continents, indicating that changes in habitats drove evolutionary changes instead of location shifts.
View Article and Find Full Text PDF

Background And Aims: The cosmopolitan Botrychium lunaria group belong to the most species rich genus of the family Ophioglossaceae and was considered to consist of two species until molecular studies in North America and northern Europe led to the recognition of multiple new taxa. Recently, additional genetic lineages were found scattered in Europe, emphasizing our poor understanding of the global diversity of the B. lunaria group, while the processes involved in the diversification of the group remain unexplored.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!