Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The particles in exhaled breath provide a promising matrix for the monitoring of pathological processes in the airways, and also allow exposure to exogenous compounds to be to assessed. The collection is easy to perform and is non-invasive. The aim of the present study is to assess if an exogenous compound-methadone-is distributed in the lining fluid of small airways, and to compare two methods for collecting methadone in particles in exhaled breath. Exhaled particles were collected from 13 subjects receiving methadone maintenance treatment. Two different sampling methods were applied: one based on electret filtration, potentially collecting exhaled particles of all sizes, and one based on impaction, collecting particles in the size range of 0.5-7 μm, known to reflect the respiratory tract lining fluid from the small airways. The collected samples were analyzed by liquid chromatography mass spectrometry, and the impact of different breathing patterns was also investigated. The potential contribution from the oral cavity was investigated by rinsing the mouth with a codeine solution, followed by codeine analysis of the collected exhaled particles by both sampling methods. The results showed that methadone was present in all samples using both methods, but when using the method based on impaction, the concentration of methadone in exhaled breath was less than 1% of the concentration collected by the method based on filtration. Optimizing the breathing pattern to retrieve particles from small airways did not increase the amount of exhaled methadone collected by the filtration method. The contamination from codeine present in the oral cavity was only detected in samples collected by the impaction method. We conclude that methadone is distributed in the respiratory tract lining fluid of small airways. The samples collected by the filtration method most likely contained a contribution from the upper airways/oral fluid in contrast to the impaction method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1752-7163/aa8b25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!