A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalized Eu(III)-Based Nanoscale Metal-Organic Framework To Achieve Near-IR-Triggered and -Targeted Two-Photon Absorption Photodynamic Therapy. | LitMetric

Functionalized Eu(III)-Based Nanoscale Metal-Organic Framework To Achieve Near-IR-Triggered and -Targeted Two-Photon Absorption Photodynamic Therapy.

Inorg Chem

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, and ‡Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.

Published: January 2018

The postsynthetic-modified nanoscale metal-organic framework (NMOF) probes selected as potential drug delivery platforms and photodynamic therapy agents to fulfill the effective and safe treatment of neoplastic diseases have attracted increasing attention recently. Herein, a Eu(III)-based NMOF probe elaborately postsynthetically modified with a β-diketonate two-photon-absorbing (TPA) ligand is rationally designed and further functionalized by assembling the photosensitizer molecule (methylene blue, MB) in the pores and a cyclic peptide targeting motif on the surface of the NMOF, which could achieve highly efficient near-infrared (NIR)-triggered and -targeted photodynamic therapy (PDT). On the basis of the luminescence resonance energy transfer process between the NMOF donor and the photosensitizer MB acceptor, the probe can achieve a high tissue-penetrable TPA-PDT effect. Thus, the NMOFs in this study play the role of not only the nanocontainer for the photosensitizer but also the energy-transfer donor. Studies in vitro show enhanced cellular uptake and satisfactory PDT effectiveness toward cancer cells compared to the free photosensitizer MB. It is highly expected that this study contributes to the development of smart luminescent diagnostic and therapeutic probes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b02475DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
nanoscale metal-organic
8
metal-organic framework
8
functionalized euiii-based
4
euiii-based nanoscale
4
framework achieve
4
achieve near-ir-triggered
4
near-ir-triggered -targeted
4
-targeted two-photon
4
two-photon absorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!