Preview The success of calcium channel antagonists in controlling hypertension, angina pectoris, and arrhythmias is well known. In recent years, second-generation agents have been introduced that are also effective against migraine headaches and Raynaud's phenomenon and appear to improve atherosclerosis and congestive heart failure. The authors summarize the characteristics that calcium channel antagonists have in common and describe the specific niche filled by the newer agents, particularly those of the dihydropyridine class.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00325481.1994.11945790 | DOI Listing |
Eur Cardiol
December 2024
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark.
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF.
View Article and Find Full Text PDFLife Metab
February 2024
School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
Emerging evidence discloses the involvement of calcium channel protein in the pathological process of liver diseases. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a ubiquitously expressed non-selective cation channel protein, controls proliferation, inflammation, and immune response via operating calcium influx in various organs. However, our understanding on the biofunction of hepatic TRPC3 is still limited.
View Article and Find Full Text PDFIn Vitro Model
June 2022
Department of Chemical Engineering, Northeastern University, Boston, MA USA.
WE43 magnesium alloy was modified using surface mechanical attrition treatment (SMAT) and characterized to evaluate the influence of sub-micron surface modification on degradation rate and in vitro behavior. Modified surface was characterized for wettability, hardness, roughness, degradation rate, in vitro biocompatibility, and antibacterial activity as per the ASTM standards. The treated substrates proved to have a significant decrease in the degradation profile by creating micro pockets of oxidation channels and reducing the total delamination in comparison to the conventional heterogeneous oxide layer formed on the untreated substrate surface.
View Article and Find Full Text PDFJ Neurochem
January 2025
School of Life Science, Nanchang University, Nanchang, China.
Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.
View Article and Find Full Text PDFJ Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!