Cross-Kerr Nonlinearity for Phonon Counting.

Phys Rev Lett

Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore.

Published: November 2017

State measurement of a quantum harmonic oscillator is essential in quantum optics and quantum information processing. In a system of trapped ions, we experimentally demonstrate the projective measurement of the state of the ions' motional mode via an effective cross-Kerr coupling to another motional mode. This coupling is induced by the intrinsic nonlinearity of the Coulomb interaction between the ions. We spectroscopically resolve the frequency shift of the motional sideband of the first mode due to the presence of single phonons in the second mode and use it to reconstruct the phonon number distribution of the second mode.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.193602DOI Listing

Publication Analysis

Top Keywords

motional mode
8
second mode
8
mode
5
cross-kerr nonlinearity
4
nonlinearity phonon
4
phonon counting
4
counting state
4
state measurement
4
measurement quantum
4
quantum harmonic
4

Similar Publications

Resonant pumping of the electronic f-f transitions in the orbital multiplet of dysprosium ions (Dy^{3+}) in a complex perovskite DyFeO_{3} is shown to impulsively launch THz lattice dynamics corresponding to the B_{2g} phonon mode, which is dominanted by the motion of Dy^{3+} ions. The findings, supported by symmetry analysis and density-functional theory calculations, not only provide a novel route for highly selective excitation of the rare-earth crystal lattices but also establish important relationships between the symmetry of the electronic and lattice excitations in complex oxides.

View Article and Find Full Text PDF

High-performance triboelectric nanogenerator employing a swing-induced counter-rotating motion mechanism and a dual potential energy storage and release strategy for wave energy harvesting.

Mater Horiz

January 2025

School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China.

The triboelectric nanogenerator (TENG) has been proved to be a very promising marine energy harvesting technology. Herein, we have developed a high-performance triboelectric nanogenerator (SD-TENG) with low friction, high durability, swing-induced counter-rotating motion mechanism (SICRMM) and dual potential energy storage and release strategy (DPESRS). The unique counter-rotating motion mechanism enabled SD-TENG to convert the external linear and swing motion energy into rotation motion energy of the inner and outer cylinders, and then converted it into a controllable power output.

View Article and Find Full Text PDF

The brain's action-mode network.

Nat Rev Neurosci

January 2025

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.

The brain is always intrinsically active, using energy at high rates while cycling through global functional modes. Awake brain modes are tied to corresponding behavioural states. During goal-directed behaviour, the brain enters an action-mode of function.

View Article and Find Full Text PDF

Ultrasound (US) is a widely used technique for liver disease but has limitations in distinguishing tumors. This study evaluates the clinical efficacy of fluctuational imaging (FLI), a new US method that detects the fluttering sign in liver tumors. We conducted a prospective exploratory study with 120 participants diagnosed with liver tumors through histopathology or standard imaging.

View Article and Find Full Text PDF

Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic applications, but their performance is susceptible to uncertainties and disturbances. This paper proposes an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping ratios to enhance system robustness and precision. An iron-core permanent magnet linear synchronous motor (PMLSM) was employed as the experimental platform for the development of a dynamic model that incorporates compensation for friction and cogging forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!