Objectives: To assess interobserver reproducibility in detecting tubal ectopic pregnancies by reading data sets from 3-dimensional (3D) transvaginal ultrasonography (TVUS) and comparing it with real-time 2-dimensional (2D) TVUS.

Methods: Images were initially classified as showing pregnancies of unknown location or tubal ectopic pregnancies on real time 2D TVUS by an experienced sonologist, who acquired 5 3D volumes. Data sets were analyzed offline by 5 observers who had to classify each case as ectopic pregnancy or pregnancy of unknown location. The interobserver reproducibility was evaluated by the Fleiss κ statistic. The performance of each observer in predicting ectopic pregnancies was compared to that of the experienced sonologist. Women were followed until they were reclassified as follows: (1) failed pregnancy of unknown location; (2) intrauterine pregnancy; (3) ectopic pregnancy; or (4) persistent pregnancy of unknown location.

Results: Sixty-one women were included. The agreement between reading offline 3D data sets and the first real-time 2D TVUS was very good (80%-82%; κ = 0.89). The overall interobserver agreement among observers reading offline 3D data sets was moderate (κ = 0.52). The diagnostic performance of experienced observers reading offline 3D data sets had accuracy of 78.3% to 85.0%, sensitivity of 66.7% to 81.3%, specificity of 79.5% to 88.4%, positive predictive value of 57.1% to 72.2%, and negative predictive value of 87.5% to 91.3%, compared to the experienced sonologist's real-time 2D TVUS: accuracy of 94.5%, sensitivity of 94.4%, specificity of 94.5%, positive predictive value of 85.0%, and negative predictive value of 98.1%.

Conclusions: The diagnostic accuracy of 3D TVUS by reading offline data sets for predicting ectopic pregnancies is dependent on experience. Reading only static 3D data sets without clinical information does not match the diagnostic performance of real time 2D TVUS combined with clinical information obtained during the scan.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jum.14489DOI Listing

Publication Analysis

Top Keywords

data sets
32
ectopic pregnancies
16
reading offline
16
offline data
16
tubal ectopic
12
ectopic pregnancy
12
unknown location
12
pregnancy unknown
12
3-dimensional transvaginal
8
data
8

Similar Publications

Background: The systemic immune-inflammation index (SII) is an emerging marker of inflammation, and the onset of psoriasis is associated with inflammation. The aim of our study was to investigate the potential impact of SII on the incidence rate of adult psoriasis.

Methods: We conducted a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES) 2011-2014 data sets.

View Article and Find Full Text PDF

A clinical narrative corpus on nut allergy: annotation schema, guidelines and use case.

Sci Data

January 2025

Computer Science and Engineering Department, Universidad Carlos III de Madrid, Av. Universidad, 30, Leganés, 28911, Madrid, Spain.

This article describes a dataset on nut allergy extracted from Spanish clinical records provided by the Hospital Universitario Fundación de Alcorcón (HUFA) in Madrid, Spain, in collaboration with its Allergology Unit and Information Systems and Technologies Department. There are few publicly available clinical texts in Spanish and having more is essential as a valuable resource to train and test information extraction systems. In total, 828 clinical notes in Spanish were employed and several experts participated in the annotation process by categorizing the annotated entities into medical semantic groups related to allergies.

View Article and Find Full Text PDF

The distinctive characteristics of an individual's T cell receptor repertoire are crucial in recognizing and responding to a diverse array of antigens, contributing to immune specificity and adaptability. The repertoire, famously vast due to a series of cellular mechanisms, can be quantified using repertoire sequencing. In this study, we sampled the repertoire of 85 women: ovarian cancer patients (OC) and healthy donors (HD), generating a dataset of T cell clones and their abundance.

View Article and Find Full Text PDF

Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. Converting textual rules into machine-readable formats is challenging due to the complexities of natural language and the scarcity of resources for advanced Machine Learning (ML). Addressing these challenges, we introduce CODE-ACCORD, a dataset of 862 sentences from the building regulations of England and Finland.

View Article and Find Full Text PDF

Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!