Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.

Pac Symp Biocomput

The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.

Published: August 2018

Genome-wide association studies (GWAS) have been successful in facilitating the understanding of genetic architecture behind human diseases, but this approach faces many challenges. To identify disease-related loci with modest to weak effect size, GWAS requires very large sample sizes, which can be computational burdensome. In addition, the interpretation of discovered associations remains difficult. PrediXcan was developed to help address these issues. With built in SNP-expression models, PrediXcan is able to predict the expression of genes that are regulated by putative expression quantitative trait loci (eQTLs), and these predicted expression levels can then be used to perform gene-based association studies. This approach reduces the multiple testing burden from millions of variants down to several thousand genes. But most importantly, the identified associations can reveal the genes that are under regulation of eQTLs and consequently involved in disease pathogenesis. In this study, two of the most practical functions of PrediXcan were tested: 1) predicting gene expression, and 2) prioritizing GWAS results. We tested the prediction accuracy of PrediXcan by comparing the predicted and observed gene expression levels, and also looked into some potential influential factors and a filter criterion with the aim of improving PrediXcan performance. As for GWAS prioritization, predicted gene expression levels were used to obtain gene-trait associations, and background regions of significant associations were examined to decrease the likelihood of false positives. Our results showed that 1) PrediXcan predicted gene expression levels accurately for some but not all genes; 2) including more putative eQTLs into prediction did not improve the prediction accuracy; and 3) integrating predicted gene expression levels from the two PrediXcan whole blood models did not eliminate false positives. Still, PrediXcan was able to prioritize GWAS associations that were below the genome-wide significance threshold in GWAS, while retaining GWAS significant results. This study suggests several ways to consider PrediXcan's performance that will be of value to eQTL and complex human disease research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749400PMC

Publication Analysis

Top Keywords

gene expression
24
expression levels
20
predicted gene
12
expression
9
gwas
8
prioritizing gwas
8
gwas associations
8
predicting gene
8
association studies
8
predixcan
8

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.

Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!