Achieving Nearly 30% External Quantum Efficiency for Orange-Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids.

Adv Mater

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.

Published: February 2018

The combination of rigid acridine donor and 1,8-naphthalimide acceptor has afforded two orange-red emitters of NAI-DMAC and NAI-DPAC with high rigidity in molecular structure and strongly pretwisted charge transfer state. Endowed with high photoluminescence quantum yields (Φ ), distinct thermally activated delayed fluorescence (TADF) characteristics, and preferentially horizontal emitting dipole orientations, these emitters afford record-high orange-red TADF organic light-emitting diodes (OLEDs) with external quantum efficiencies of up to 21-29.2%, significantly surpassing all previously reported orange-to-red TADF OLEDs. Notably, the influence of microcavity effect is verified to support the record-high efficiency. This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal Φ s.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201704961DOI Listing

Publication Analysis

Top Keywords

external quantum
8
thermally activated
8
activated delayed
8
delayed fluorescence
8
achieving 30%
4
30% external
4
quantum efficiency
4
efficiency orange-red
4
orange-red organic
4
organic light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!