The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of Zn and Cd ions, using Co as a spectroscopic probe for Zn binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and Co titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756683PMC
http://dx.doi.org/10.1007/s00775-017-1513-9DOI Listing

Publication Analysis

Top Keywords

metal ion
12
ion binding
12
musa acuminata
8
metal ions
8
metal
5
insights metal
4
binding
4
binding abilities
4
abilities metalation
4
metalation pathway
4

Similar Publications

In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.

View Article and Find Full Text PDF

This work aimed at addressing the problem of hexavalent chromium pollution in the water environment, designing and preparing the Cu/CuO/NH-MIL-88B (Fe) heterojunction material with NH-MIL-88B (Fe) as the carrier, Cu/CuO was loaded on NH-MIL-88B (Fe) by light-assisted reduction. The loading of CuO effectively improves the visible light absorption capacity of the composite material. The SPR effect of Cu improves the separation and transfer of photogenerated carriers in the composite material.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!