A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential vulnerability of oak forests to climate change-induced flooding: effects of mild oxygen deficiency on Quercus robur and Quercus petraea seedling physiology. | LitMetric

Flooding is characterized by saturation of soil pores with water, leading to hypoxic conditions which affect plant root development and metabolism. We investigated the oxygen deficiency tolerance observed in Quercus robur and Quercus petraea and seek to understand whether it can be explained by enhanced efficiency in oxygen use in the roots, as estimated through radial oxygen loss visualization in relation to growth measurements and root apex respiration. The study showed that root growth, under oxygen deficiency conditions, was significantly reduced only in Q. robur seedlings. Root respiration was maintained in Q. robur, whereas it was decreased in Q. petraea. Both species set up a barrier against radial oxygen loss, though measurement of apex oxygen leakage showed greater oxygen efficiency in Q. robur seedlings. This strategy might allow Q. robur to maintain its respiration and thus to survive longer under oxygen deficiency conditions by facilitating the seedling establishment in transient flooded soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-0893-2DOI Listing

Publication Analysis

Top Keywords

oxygen deficiency
16
oxygen
9
quercus robur
8
robur quercus
8
quercus petraea
8
radial oxygen
8
oxygen loss
8
deficiency conditions
8
robur seedlings
8
robur
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!