The emerging role of zinc transporters in cellular homeostasis and cancer.

Signal Transduct Target Ther

Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

Published: February 2021

Zinc is an essential micronutrient that plays a role in the structural or enzymatic functions of many cellular proteins. Cellular zinc homeostasis involves the opposing action of two families of metal transporters: the ZnT (SLC30) family that functions to reduce cytoplasmic zinc concentrations and the ZIP (SLC39) family that functions to increase cytoplasmic zinc concentrations. Fluctuations in intracellular zinc levels mediated by these transporter families affect signaling pathways involved in normal cell development, growth, differentiation and death. Consequently, changes in zinc transporter localization and function resulting in zinc dyshomeostasis have pathophysiological effects. Zinc dyshomeostasis has been implicated in the progression of cancer. Here we review recent progress toward understanding the structural basis for zinc transport by ZnT and ZIP family proteins, as well as highlight the roles of zinc as a signaling molecule in physiological conditions and in various cancers. As zinc is emerging as an important signaling molecule in the development and progression of cancer, the ZnT and ZIP transporters that regulate cellular zinc homeostasis are promising candidates for targeted cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661630PMC
http://dx.doi.org/10.1038/sigtrans.2017.29DOI Listing

Publication Analysis

Top Keywords

zinc
13
cellular zinc
8
zinc homeostasis
8
family functions
8
cytoplasmic zinc
8
zinc concentrations
8
zinc dyshomeostasis
8
progression cancer
8
znt zip
8
signaling molecule
8

Similar Publications

Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries.

J Am Chem Soc

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO (for OER) to enhance both ORR and OER performances.

View Article and Find Full Text PDF

Plastic responses to past environments shape adaptation to novel selection pressures.

Proc Natl Acad Sci U S A

February 2025

Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.

Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.

View Article and Find Full Text PDF

Assessing blood metal levels in house sparrows (Passer domesticus) across urban and rural habitats in Meknes.

Environ Sci Pollut Res Int

January 2025

Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco.

This study investigates the concentration of heavy metals lead (Pb), cadmium (Cd), and zinc (Zn) in the blood of house sparrows (Passer domesticus) across various urban habitats in Meknes, Morocco. Fifty adult sparrows were captured from five distinct sites, including industrial, high-traffic, and rural areas. Blood samples were specifically analyzed for Pb, Cd, and Zn using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).

View Article and Find Full Text PDF

Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.

View Article and Find Full Text PDF

Distinct seasonality of nutrients in twigs and leaves of temperate trees.

Tree Physiol

January 2025

School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.

Seasonal variations of nutrients in different organs are an essential strategy for temperate trees to maintain growth and function. The seasonal variations and variability (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!