Multiscale electrochemistry of hydrogels embedding conductive nanotubes.

Chem Sci

Sorbonne Paris Cité , Paris Diderot University, Interfaces , Traitements , Organisation et Dynamique des Systèmes (ITODYS) , CNRS-UMR 7086 , 15 rue J. A. de Baif , 75013 Paris , France . Email: ; ; Tel: +33 157277217.

Published: July 2015

The local functionalities of biocompatible objects can be characterized under conditions similar to the operating ones, using scanning electrochemical microscopy (SECM). In the case of alginate beads entrapping carbon nanotubes (CNTs), SECM allows evidencing of the local conductivity, organization, and communication between the CNTs. It shows that the CNT network is active enough to allow long range charge evacuation, enabling the use of alginate/CNT beads as soft 3D electrodes. Direct connection or local interrogation by a microelectrode allows visualization of their communication as a network and eventually the study of them individually at the nanoscale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707460PMC
http://dx.doi.org/10.1039/c5sc00549cDOI Listing

Publication Analysis

Top Keywords

multiscale electrochemistry
4
electrochemistry hydrogels
4
hydrogels embedding
4
embedding conductive
4
conductive nanotubes
4
nanotubes local
4
local functionalities
4
functionalities biocompatible
4
biocompatible objects
4
objects characterized
4

Similar Publications

The chemistry of molten salts has attracted great research interest owing to their wide applications in diverse fields. In the pyrochemical reprocessing of spent nuclear fuel or molten salt nuclear reactors, lanthanide elements as the principal fission products bring about changes in the composition and properties of molten salts. Herein, we report a comprehensive study on the coordination chemistry of the representative trivalent lanthanide ions (La/Nd) in LiCl-KCl-CsCl using a multiscale strategy combining Raman spectroscopy, deep learning, and large-scale molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing the GOR via the NiOOH/Ni(OH) pair.

View Article and Find Full Text PDF

Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear.

View Article and Find Full Text PDF

Biomimetic Hierarchies for Universal Surface Enhancement and Applications in Water Treatment.

ACS Appl Mater Interfaces

October 2024

Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Hierarchical superstructures, ubiquitously found in nature, offer enhanced efficiency in both substance reaction and mass transport owing to their unique multiscale features. Inspired by these natural systems, this research reports a general and scalable electrochemical scheme for creating highly branched, multilevel porous superstructures on various electrically conductive substrates. These structures exhibit cascading features from centimeters, submillimeters, micrometers, down to sub-100 nm, significantly increasing the surface area of substrates, such as foams, foils, and carbon cloth by 2 orders of magnitude─among the highest reported enhancements.

View Article and Find Full Text PDF

Microbiological Evaluation of Thermoplastic PETG Dental Appliances Related to Surface Characteristics.

Polymers (Basel)

August 2024

Department of Preventive, Community Dentistry and Oral Health, Center for Advanced Technologies in Dental Prosthodontics, Faculty of Dental Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania.

(1) Background: The adhesion and microbiological behaviour of thermoplastic PETG dental appliance surfaces is governed by roughness parameters. The aim of this research was to evaluate the antibiofilm activity of alkaline peroxide-based disinfectant in Candida albicans biofilms on thermoplastic PETG, related to artificial ageing and surface characteristics, on multiscale levels. (2) Methods: In the present study, two PETG materials were investigated: Crystal (Bio Art Dental Equipment, Sao Carlos, Brazil), noted as C, and Duran (Scheu-Dental GmbH, Iserlohn, Germany)-noted as D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!