Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. Acquiring a better understanding of the pathogenic mechanisms is essential to the design of effective therapeutic strategies. Previous studies have found that miR-520d-5p was negatively correlated with glioma grade, but its role and mechanism in glioma progression remain largely unknown. In the present study, we reported that miR-520d-5p directly targeted the Pituitary Tumor Transforming Gene 1 (PTTG1) and functioned as a tumor-suppressor in glioma. The expression of miR-520d-5p in glioma cells and specimens were detected by Quantitative reverse transcription-PCR and Fluorescence in situ hybridization (FISH). The effects of miR-520d-5p on glioma progression was examined by cell-counting kit 8, colony formation, 5-ethynyl-2-deoxyuridine (EDU) and flow cytometry assays. Using bioinformatics and luciferase reporter assays, we identified PTTG1 as a novel and direct target of miR-520d-3p. A xenograft model was used to study the effect of miR-520d-5p on tumor growth and angiogenesis. We found that miR-520d-5p expression was significantly decreased in glioma cell lines and tissues. Overexpression of miR-520d-5p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U87-MG and LN229 glioma cells. PTTG1 was a novel and direct target of miR-520d-5p, and the protein expression of PTTG1 was markedly reduced after overexpression of miR-520d-5p in U87-MG and LN229 cells. Overexpression of PTTG1 reversed the inhibitory effect of miR-520d-5p on glioma cell proliferation. studies confirmed that miR-520d-5p overexpression retarded the growth of U87 xenograft tumors, which was accompanied by reduced expression of PTTG1. In conclusion, these results provide compelling evidence that miR-520d-5p functions as an anti-onco-miRNA, which is important in inhibiting cell proliferation in GBM, and its anti-oncogenic effects are mediated chiefly through direct suppression of PTTG1 expression. Therefore, we suggest that miR-520d-5p is a potential candidate for the prevention of glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714772PMC

Publication Analysis

Top Keywords

cell proliferation
16
mir-520d-5p
13
glioma cell
12
mir-520d-5p glioma
12
glioma
11
cell cycle
8
pttg1
8
glioma progression
8
expression mir-520d-5p
8
glioma cells
8

Similar Publications

GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).

Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy.

Front Biosci (Landmark Ed)

December 2024

Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).

View Article and Find Full Text PDF

The Warburg Effect: Is it Always an Enemy?

Front Biosci (Landmark Ed)

November 2024

Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.

The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.

View Article and Find Full Text PDF

Downregulated METTL3 Accumulates TERT Expression that Promote the Progression of Ovarian Endometriosis.

Front Biosci (Landmark Ed)

December 2024

Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.

Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!