Chemokines and their receptors play critical roles in the progression of autoimmunity and inflammation. Typically, multiple chemokines are involved in the development of these pathologies. Indeed, targeting single chemokines or chemokine receptors has failed to achieve significant clinical benefits in treating autoimmunity and inflammation. Moreover, the binding of host atypical chemokine receptors to multiple chemokines as well as the binding of chemokine-binding proteins secreted by various pathogens can serve as a strategy for controlling inflammation. In this work, promiscuous chemokine-binding peptides that could bind and inhibit multiple inflammatory chemokines, such as CCL2, CCL5, and CXCL9/10/11, were selected from phage display libraries. These peptides were cloned into human mutated immunoglobulin Fc-protein fusions (peptibodies). The peptibodies BKT120Fc and BKT130Fc inhibited the ability of inflammatory chemokines to induce the adhesion and migration of immune cells. Furthermore, BKT120Fc and BKT130Fc also showed a significant inhibition of disease progression in a variety of animal models for autoimmunity and inflammation. Developing a novel class of antagonists that can control the courses of diseases by selectively blocking multiple chemokines could be a novel way of generating effective therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703867 | PMC |
http://dx.doi.org/10.3389/fimmu.2017.01432 | DOI Listing |
J Clin Med
January 2025
Department of Respiratory Medicine, National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, European Reference Network (ERN)-LUNG, 28 Avenue Doyen Lepine, 69677 Lyon, France.
Antibodies against Ku have been described in patients with various connective tissue diseases. The objective of this study was to describe the clinical, functional, and imaging characteristics of interstitial lung disease in patients with anti-Ku antibodies. : This single-center, retrospective observational study was conducted at a tertiary referral institution.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells.
View Article and Find Full Text PDFNutrients
December 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy.
Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!