Annexins, a family of highly conserved calcium- and phospholipid-binding proteins, play important roles in a wide range of physiologic functions. Among the 12 known annexins in humans, annexin A2 (AnxA2) is one of the most extensively studied and has been implicated in various human diseases. AnxA2 can exist as a monomer or a heterotetrameric complex with S100A10 (P11) and plays a critical role in many cellular processes, including exocytosis, endocytosis, and membrane organization. At the endothelial cell surface, the (AnxA2⋅P11) tetramer-acting as a coreceptor for plasminogen and tissue plasminogen activator (tPA)-accelerates tPA-dependent activation of the fibrinolytic protease, plasmin, the enzyme that is responsible for thrombus dissolution and the degradation of fibrin. This study demonstrates that EPAC1 (exchange proteins directly activated by cAMP isoform 1) interacts with AnxA2 and regulates its biologic functions by modulating its membrane translocation in endothelial cells. By using genetic and pharmacologic approaches, we demonstrate that EPAC1-acting via the PLCε-PKC pathway-inhibits AnxA2 surface translocation and plasminogen activation. These results suggest that EPAC1 plays a role in the regulation of fibrinolysis in endothelial cells and may represent a novel therapeutic target for disorders of fibrinolysis.-Yang, W., Mei, F. C., Cheng, X. EPAC1 regulates endothelial annexin A2 cell surface translocation and plasminogen activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893177 | PMC |
http://dx.doi.org/10.1096/fj.201701027R | DOI Listing |
Langmuir
January 2025
Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
LiFePO (LFP) typically requires a conductive additive to improve its low ion and electron conductivity. In this study, we achieved significant enhancements in Li and electron mobility by applying a minimal amount of conductive material through a new coating process. The coin cell demonstrated an excellent capacity of 157.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFUnlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFThe discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!