Mounting an immune response consumes resources, which should lead to increased feeding. However, activating the immune system reduces feeding (i.e. illness-induced anorexia) in both vertebrates and invertebrates, suggesting that it may be beneficial. We suggest that illness-induced anorexia may be an adaptive response to conflicts between immune defense and food detoxification. We found that activating an immune response in the caterpillar increased its susceptibility to the toxin permethrin. Conversely, a sublethal dose of permethrin reduced resistance to the bacterium , demonstrating a negative interaction between detoxification and immune defense. Immune system activation and toxin challenge each depleted the amount of glutathione in the hemolymph. Increasing glutathione concentration in the hemolymph increased survival for both toxin- and immune+toxin-challenged groups. The results of this rescue experiment suggest that decreased glutathione availability, such as occurs during an immune response, impairs detoxification. We also found that the expression of some detoxification genes were not upregulated during a combined immune-toxin challenge, although they were when animals received a toxin challenge alone. These results suggest that immune defense reduces food detoxification capacity. Illness-induced anorexia may protect animals by decreasing exposure to food toxins when detoxification is impaired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.173336 | DOI Listing |
Sci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFBMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFFEMS Microbiol Rev
December 2024
Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction.
View Article and Find Full Text PDFCell Host Microbe
December 2024
CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China. Electronic address:
Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized.
View Article and Find Full Text PDFMalays J Pathol
December 2024
University Tunku Abdul Rahman, Faculty of Medicine and Health Sciences, Cheras 43000 Kajang, Selangor, Malaysia.
Conventionally, megakaryocytes (MKs) are regarded as platelet-producing cells and their platelet-related functions in haemostasis have been well documented. However, it is increasingly evident that MKs have functions beyond platelet production. Convincing findings suggest that MKs are active participants in immunity and infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!