Cardiac myocyte membranes contain lipids which remodel dramatically in response to heart growth and remodeling. Lipid species have both structural and functional roles. Physiological and pathological cardiac remodeling have very distinct phenotypes, and the identification of molecular differences represent avenues for therapeutic interventions. Whether the abundance of specific lipid classes is different in physiological and pathological models was largely unknown. The aim of this study was to determine whether distinct lipids are regulated in settings of physiological and pathological remodeling, and if so, whether modulation of differentially regulated lipids could modulate heart size and function. Lipidomic profiling was performed on cardiac-specific transgenic mice with 1) physiological cardiac hypertrophy due to increased Insulin-like Growth Factor 1 (IGF1) receptor or Phosphoinositide 3-Kinase (PI3K) signaling, 2) small hearts due to depressed PI3K signaling (dnPI3K), and 3) failing hearts due to dilated cardiomyopathy (DCM). In hearts of dnPI3K and DCM mice, several phospholipids (plasmalogens) were decreased and sphingolipids increased compared to mice with physiological hypertrophy. To assess whether restoration of plasmalogens could restore heart size or cardiac function, dnPI3K and DCM mice were administered batyl alcohol (BA; precursor to plasmalogen biosynthesis) in the diet for 16weeks. BA supplementation increased a major plasmalogen species (p18:0) in the heart but had no effect on heart size or function. This may be due to the concurrent reduction in other plasmalogen species (p16:0 and p18:1) with BA. Here we show that lipid species are differentially regulated in settings of physiological and pathological remodeling. Restoration of lipid species in the failing heart warrants further examination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2017.12.003 | DOI Listing |
Biomater Sci
January 2025
Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea.
Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.
View Article and Find Full Text PDFJ Intensive Care
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.
View Article and Find Full Text PDFCell Commun Signal
January 2025
National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!