Why should we measure free 25(OH) vitamin D?

J Steroid Biochem Mol Biol

Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Departments of Embryology and Nephrology, The First Affiliated Hospital, Jinan University, Guangzhou, China. Electronic address:

Published: June 2018

Vitamin D, either in its D or D form, is essential for normal human development during intrauterine life, kidney function and bone health. Vitamin D deficiency has also been linked to cancer development and some autoimmune diseases. Given this huge impact of vitamin D on human health, it is important for daily clinical practice and clinical research to have reliable tools to judge on the vitamin D status. The major circulating form of vitamin D is 25-hydroxyvitamin D (25(OH)D), although it is not the most active metabolite, the concentrations of total 25-hydroxyvitamin D in the serum are currently routinely used in clinical practice to assess vitamin D status. In the circulation, vitamin D - like other steroid hormones - is bound tightly to a special carrier - vitamin D-binding protein (DBP). Smaller amounts are bound to blood proteins - albumin and lipoproteins. Only very tiny amounts of the total vitamin D are free and potentially biologically active. Currently used vitamin D assays do not distinguish between the three forms of vitamin D - DBP-bound vitamin D, albumin-bound vitamin D and free, biologically active vitamin D. Diseases or conditions that affect the synthesis of DBP or albumin thus have a huge impact on the amount of circulating total vitamin D. DBP and albumin are synthesized in the liver, hence all patients with an impairment of liver function have alterations in their total vitamin D blood concentrations, while free vitamin D levels remain mostly constant. Sex steroids, in particular estrogens, stimulate the synthesis of DBP. This explains why total vitamin D concentrations are higher during pregnancy as compared to non-pregnant women, while the concentrations of free vitamin D remain similar in both groups of women. The vitamin D-DBP as well as vitamin D-albumin complexes are filtered through the glomeruli and re-uptaken by megalin in the proximal tubule. Therefore, all acute and chronic kidney diseases that are characterized by a tubular damage, are associated with a loss of vitamin D-DBP complexes in the urine. Finally, the gene encoding DBP protein is highly polymorphic in different human racial groups. In the current review, we will discuss how liver function, estrogens, kidney function and the genetic background might influence total circulating vitamin D levels and will discuss what vitamin D metabolite is more appropriate to measure under these conditions: free vitamin D or total vitamin D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2017.11.014DOI Listing

Publication Analysis

Top Keywords

vitamin
27
total vitamin
20
free vitamin
12
kidney function
8
huge impact
8
clinical practice
8
vitamin status
8
vitamin free
8
free biologically
8
biologically active
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!