Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2017.12.001 | DOI Listing |
BMC Public Health
January 2025
Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.
Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.
Front Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFActa Trop
December 2024
Department of Entomology, Aggeu Magalhães Institute/Oswaldo Cruz Foundation (IAM/Fiocruz), Recife, Pernambuco, Brazil.
This study characterizes the Aedes aegypti population from Fernando de Noronha Island, Pernambuco, Brazil, prior to implementing the Sterile Insect Technique (SIT). The main objective was to assess changes in glutathione S-transferase (GST) enzyme activity, previously linked to cypermethrin resistance in this population, in 2010. GST activity was measured in both male and female mosquitoes, masse produced in lab, after exposure to ionizing radiation.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, USA. Electronic address:
Controlling Aedes aegypti mosquitoes is crucial for managing mosquito-transmitted diseases like dengue, zika, chikungunya, and yellow fever. One of the efficient methods to control mosquitoes is to block their progression from the larval to the adult stage. Juvenile hormones (JH) maintain the larval stage and ensure proper developmental timing for transitioning from larval-pupal-adult stages.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.
Sensory compensation occurs when loss of one sense leads to enhanced perception by another sense. We have identified a previously undescribed mechanism of sensory compensation in female mosquitoes. Odorant receptor co-receptor () mutants show enhanced attraction to human skin temperature and increased heat-evoked neuronal activity in foreleg sensory neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!