N-propyl-2,2-diphenyl-2-hydroxyacetamide, a novel α-hydroxyamide with anticonvulsant, anxiolytic and antidepressant-like effects that inhibits voltage-gated sodium channels.

Eur J Pharmacol

Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Ciudad de Buenos Aires, Argentina. Electronic address:

Published: January 2018

In patients with epilepsy, anxiety and depression are the most frequent psychiatric comorbidities but they often remain unrecognized and untreated. We report herein the antidepressant-like activity in two animal models, tail suspension and forced swimming tests, of six anticonvulsants α-hydroxyamides. From these, N-propyl-2,2-diphenyl-2-hydroxyacetamide (compound 5) emerged not only as the most active as anticonvulsant (ED = 2.5mg/kg, MES test), but it showed the most remarkable antidepressant-like effect in the tail suspension and forced swimming tests (0.3-30mg/kg, i.p.); and, also, anxiolytic-like action in the plus maze test (3-10mg/kg, i.p.) in mice. Studies of its mechanism of action, by means of its capacity to act via the GABA receptor ([H]-flunitrazepam binding assay); the 5-HT receptor ([H]-8-OH-DPAT binding assay) and the voltage-gated sodium channels (either using the patch clamp technique in hNa 1.2 expressed in HEK293 cell line or using veratrine, in vivo) were attempted. The results demonstrated that its effects are not likely related to 5-HT or GABAergic receptors and that its anticonvulsant and antidepressant-like effect could be due to its voltage-gated sodium channel blocking properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2017.11.048DOI Listing

Publication Analysis

Top Keywords

voltage-gated sodium
12
sodium channels
8
tail suspension
8
suspension forced
8
forced swimming
8
swimming tests
8
binding assay
8
n-propyl-22-diphenyl-2-hydroxyacetamide novel
4
novel α-hydroxyamide
4
α-hydroxyamide anticonvulsant
4

Similar Publications

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.

View Article and Find Full Text PDF

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Evaluation of professional practices in the use of mexiletine for the management of childhood myotonia in French pediatric neuromuscular centers (MEXI-PEDI survey).

Arch Pediatr

January 2025

CMR Neuromusculaire, Service de génétique médicale, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France. Electronic address:

Background: Myotonia is the main feature of both myotonic dystrophy (DM) and non-dystrophic myotonia (NDM). It is felt as stiffness, pain, fatigue, and weakness. In France, mexiletine, a non-selective voltage-gated sodium channel blocker, is approved for the treatment of myotonia in adults with NDM, and it has a temporary recommendation for use in the symptomatic treatment of DM in adults.

View Article and Find Full Text PDF

The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!