Background: Docosahexaenoic acid (DHA) is important for optimal neurodevelopment and brain function during the childhood when the brain is still under development.
Methods: The effects of DHA-Phosphatidylcholine (DHA-PC) and the recombination of DHA-Triglyceride with egg PC (DHA-TG + PC) or α-Glycerylphosphorylcholine (DHA-TG + α-GPC) were comparatively analyzed on DHA recovery and the DHA accumulation kinetics in tissues including cerebral cortex, erythrocyte, liver, and testis were evaluated in the weaning n-3 deficient mice.
Results: The concentration of DHA in weaning n-3 deficient mice could be recovered rapidly by dietary DHA supplementation, in which DHA-PC exhibited the better efficacy than the recombination of DHA-Triglyceride with egg PC or α-GPC. Interestingly, DHA-TG + α-GPC exhibited the greater effect on DHA accumulation than DHA-TG + PC in cerebral cortex and erythrocyte (p < 0.05), which was similar to DHA-PC. Meanwhile, DHA-TG + PC showed a similar effect to DHA-PC on DHA repletion in testis, which was better than that of DHA-TG + α-GPC (p < 0.05).
Conclusion: We concluded that different forms of DHA supplements could be applied targetedly based on the DHA recovery in different tissues, although the supplemental effects of the recombination of DHA-Triglyceride with egg PC or α-GPC were not completely equivalent to that of DHA-PC, which could provide some references to develop functional foods to support brain development and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721541 | PMC |
http://dx.doi.org/10.1186/s12944-017-0623-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!