Aims: Cyclic adenosine 3'5'-monophosphate (cAMP) is a universal second messenger that plays an important role in intracellular signal transduction. cAMP is synthesized by adenylate cyclases from adenosine triphosphate and terminated by the phosphodiesterases (PDEs). In the present study, we investigated the role of the cAMP pathway in tubular epithelial cell mitochondrial biogenesis in the pathogenesis of renal fibrosis.
Results: We found that the cAMP levels were decreased in fibrotic kidney tissues, and replenishing cAMP could ameliorate tubular atrophy and extracellular matrix deposition. The downregulation of cAMP was mainly attributed to the increased PDE4 expression in tubular epithelial cells. The inhibition of PDE4 by PDE4 siRNA or the specific inhibitor, rolipram, attenuated unilateral ureteral obstruction-induced renal interstitial fibrosis and transforming growth factor (TGF)-β1-stimulated primary tubular epithelial cell (PTC) damage. The Epac1/Rap1 pathway contributed to the main effect of cAMP on renal fibrosis. Rolipram could restore C/EBP-β and PGC-1α expression and protect the mitochondrial function and structure of PTCs under TGF-β1 stimulation. The antifibrotic role of rolipram in renal fibrosis relies on C/EBP-β and PGC-1α expression in tubular epithelial cells. Innovation and Conclusion: The results of the present study indicate that cAMP signaling regulates the mitochondrial biogenesis of tubular epithelial cells in renal fibrosis. Restoring cAMP by the PDE4 inhibitor rolipram may ameliorate renal fibrosis by targeting C/EBP-β/PGC1-α and mitochondrial biogenesis. Antioxid. Redox Signal. 29, 637-652.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2017.7041 | DOI Listing |
Trends Mol Med
January 2025
Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD metabolism. Recent advancements have highlighted the critical role of NAD metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD).
View Article and Find Full Text PDFInt J Stem Cells
January 2025
Biomedical Research Center, Asan Institute for Life Sciences, Seoul, Korea.
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. Despite advancements in various treatments, the prevalence of DKD continues to rise, leading to a significant increase in the demand for dialysis and kidney transplantation. This study aimed to evaluate the effects of a Small cell+Ultra Potent+Scale UP cell (SMUP-Cell), a type of human umbilical cord blood-derived mesenchymal stem cell, on DKD in the db/db mouse model of type 2 diabetes mellitus.
View Article and Find Full Text PDFPhytomedicine
December 2024
School of Biological Science and Technology, University of Jinan, Jinan, 250022, China. Electronic address:
Background: Renal fibrosis is a major pathological feature of many chronic kidney diseases, and traditional Chinese medicines (TCM) have shown promising therapeutic potential for treating renal fibrosis. Although the extracts or fractions of Morus alba leaves and twigs have been reported to ameliorate renal fibrosis, the beneficial effects of M. alba root bark (commonly known as Sang-Bai-Pi), a well-known TCM, on this disorder have not been investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.
View Article and Find Full Text PDFJ Nat Med
January 2025
Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!