Background/aims: Hmgn2 is involved in regulating embryonic development, but its physiological function during embryo implantation and decidualization remains unknown.
Methods: In situ hybridization, real-time PCR, RNA interference, gene overexpression and MTS assay were used to examine the expression of Hmgn2 in mouse uterus during the pre-implantation period and explore its function and regulatory mechanisms in epithelial adhesion junction and stromal cell proliferation and differentiation.
Results: Hmgn2 was primarily accumulated in uterine luminal epithelia on day 4 of pregnancy and subluminal stromal cells around the implanting blastocyst at implantation sites on day 5. Similar results were observed during delayed implantation and activation. Meanwhile, Hmgn2 expression was visualized in the decidua. In uterine epithelial cells, silencing of Hmgn2 by specific siRNA reduced the expression of adhesion molecules Cdh1, Cdh2 and Ctnnb1 and enhanced the expression of Muc1, whereas constitutive activation of Hmgn2 exhibited the opposite effects, suggesting a role for Hmgn2 in attachment reaction during embryo implantation. Estrogen stimulated the expression of Hmgn2 in uterine epithelia, but the stimulation was abrogated by ER antagonist ICI 182,780. Further analysis evidenced that attenuation of Hmgn2 might eliminate the regulation of estrogen on the expression of Cdh1, Cdh2 and Ctnnb1. In uterine stromal cells, progesterone induced the accumulation of Hmgn2 which advanced the expression of Prl8a2 and Prl3c1, two well-known differentiation markers for decidualization, but did not affect the proliferation of stromal cells. Knockdown of Hmgn2 blocked the progesterone-induced differentiation of uterine stromal cells. Moreover, Hmgn2 might serve as an intermediate to mediate the regulation of progesterone on Hand2.
Conclusion: Hmgn2 may play an important role during embryo implantation and decidualization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000485775 | DOI Listing |
Int J Dev Biol
December 2024
Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
Aggregates of two mouse embryos produce viable offspring of normal size, indicating that there are mechanisms in the embryo that can downregulate their size to the size of the corresponding normal (single) embryos. Very little is known about the mechanisms controlling compensation for increased preimplantation size. Also, it is still elusive when exactly during development chimeric embryos regulate their size.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
Embryo implantation involves a complex interaction between the embryo and the endometrium of the mother, the study of which faces a variety of problems. The modeling of endometrial epithelial organoids and endometrial assembloids provides a new way to study the process of embryo implantation . This paper summarized the latest research progress in embryo implantation, the regulation mechanism of endometrial receptivity by estrogen- progesterone coordination and embryo-derived signals, the establishment of endometrial organoids, and the development and application of endometrial assembloids in the research on mother-embryo interaction, providing new strategies for studying the communication between embryo and maternal uterus during implantation.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Mol Hum Reprod
December 2024
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Endometrial collagen I undergoes dynamic degradation and remodelling in response to endometrial stromal cell (ESC) decidualization and embryo implantation. However, excessive collagen I deposition in the endometrium during the implantation window may impair decidualization, causing embryo implantation failure in patients with endometriosis (EMS). We found that endometrial collagen I expression during the mid-secretory phase was increased in the EMS group of patients.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2024
Department of Obstetrics and Gynecology, Westchester Medical Center, New York Medical College, 35 Sunshine Cottage Road, Valhalla, NY, 10595, USA.
Purpose: To evaluate the effect of transvaginal ovarian drilling (TVOD) on IVF outcomes in subjects with clomiphene-resistant PCOS and a history of IVF failure.
Methods: Between 2008 and 2011, 19 subjects with sonographically PCOS and a history of failure to ovulate to high-dose clomiphene citrate were prospectively followed and underwent TVOD at a university hospital-based IVF program.
Results: In 15 subjects who underwent 30 fresh paired IVF cycles TVOD resulted in a significantly higher number of oocytes retrieved (7.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!