Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

Sci Total Environ

Agriculture and Forest Engineering Department (EAGROF), University of Lleida, Alcalde Rovira Roure 191, 25198 Lleida, Catalonia, Spain; Forest Sciences Centre of Catalonia, Carretera de Sant Llorenç de Morunys km 2, Solsona 25280, Catalonia, Spain.

Published: April 2018

We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.297DOI Listing

Publication Analysis

Top Keywords

prescribed fire
24
fire
16
central catalonia
8
exposure metrics
8
fire exposure
8
fire treatment
8
prescribed
5
optimizing prescribed
4
fire allocation
4
allocation managing
4

Similar Publications

This paper examines the intersection of environmental history and the history of science, specifically the impact of forestry science and fire management on land use and community dynamics in rural Portuguese mountains. It further traces the evolution of fire management from an ancestral rural practice to a scientific concern and the subsequent integration of vernacular knowledge with scientific methods. In the early twentieth century, fire was a common tool in rural Portugal for land clearance, pasture management, and soil enrichment.

View Article and Find Full Text PDF

Encountering Prescribed Fire: Characterizing the Intersection of Prescribed Fire and Wildfire in the CONUS.

ACS EST Air

December 2024

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States.

Prescribed fire is applied across the United States as a fuel treatment to manage the impact of wildfires and restore ecosystems. While the recent application of prescribed fire has largely been confined to the southeastern US, the increase in catastrophic wildfires has accelerated the growth of prescribed fire more broadly. To effectively achieve wildfire risk reduction benefits, which includes reducing the amount of smoke emitted, the area treated by prescribed fire must come into contact with a subsequent wildfire.

View Article and Find Full Text PDF

Simulating fuel management for protecting regional biodiversity under climate change.

J Environ Manage

December 2024

Fire Ecology and Biodiversity Group, The University of Melbourne, School of Agriculture, Food and Ecosystem Sciences, Creswick, VIC, Australia.

Climate change is resulting in larger, more frequent, and more severe wildfires which have increasingly negative impacts on people and the environment. Under these circumstances, it is critical to determine whether fire management actions can mitigate biodiversity impacts under future fire regimes. However, it is currently unclear how changing climate and management interact to influence the spatial distribution of risks to biodiversity.

View Article and Find Full Text PDF

Wildland fire-atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights.

View Article and Find Full Text PDF

Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and both the type and reoccurrence of fuel treatments are likely to strongly influence stand trajectories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!