Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and industrial wastewater treatment. To reveal the capacity of MBRs for removal of ARGs and the response of membrane fouling after antibiotic exposure, five typical ARG subtypes (sulI, sulII, tetC, tetX and ereA) and int1 were quantified affiliated by systematic membrane foulants analysis in a laboratory-scale anoxic/aerobic membrane bioreactor (A/O-MBR). Sulfamethoxazole and tetracycline hydrochloride additions increased ARG abundances by 0.5-1.4 orders of magnitude in the activated sludge, while the ARG removal performance of the membrane module remained stable (or even increased with ARG absolute abundance in several cases), with the abundance of removed ARGs ranging from 0.6 to 5.6 orders of magnitude. Specifically, the distribution of ARGs in membrane foulants accounted for 13%-25% of the total absolute abundance of all tested MBR samples. Indeed, substantial fouling occurred after the antibiotic additions, with the mean concentrations of soluble microbial product (SMP) and extracellular polymeric substance (EPS) increasing by 340% and 220%, respectively, in a membrane fouling cycle; moreover, the contents of EPS and SMP in the membrane foulants were significantly correlated with the ARG absolute abundance of membrane foulants (p < 0.05), among which more significant correlations occurred between both the protein and polysaccharide of foulants than that with humic acid. The dense membrane fouling layer and the membrane itself constituted dual barriers that effectively avoided the leakage of ARGs from the membrane module. Our findings provide fundamental insights into the proliferation and removal of ARGs in MBR systems, and highlight the contribution of membrane fouling to ARG removals in terms of the potential of MBR as an effective strategy to reduce ARG levels in WWTP effluent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.11.067 | DOI Listing |
Water Res
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
Membranes (Basel)
December 2024
Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
This study investigated membrane fouling issues associated with the operation of a submerged ultrafiltration membrane in a drinking water treatment plant (DWTP) and optimized the associated chemical cleaning strategies. By analyzing the surface components of the membrane foulant and the compositions of the membrane cleaning solution, the primary causes of membrane fouling were identified. Membrane fouling control strategies suitable for the DWTP were evaluated through chemical cleaning tests conducted for bench-scale, full-scale, and engineering cases.
View Article and Find Full Text PDFWater Res
March 2025
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Micropollutants (MPs) in aquaculture water are directly related to human health, but largely overlooked. The conventional water treatment technologies could not effectively remove MPs, and new technologies have been pursued with high MP removal rate, low cost and small footprint. This paper reported the first endeavor of using layer-by-layer (LBL) hollow fiber (HF) nanofiltration (NF) membranes to treat real aquaculture water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!